Compare commits

...

1 Commits

Author SHA1 Message Date
pixeebot[bot]
7879dd3aac
Limit readline() 2024-04-16 04:51:38 +00:00

View File

@ -1,178 +1,178 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from json import loads, dumps
from collections import OrderedDict
from datetime import datetime
from traceback import print_exc
# Taken from https://github.com/dgunter/ParseZeekLogs <3
class ParseZeekLogs(object):
"""
Class that parses Zeek logs and allows log data to be output in CSV or json format.
Attributes: filepath: Path of Zeek log file to read
"""
def __init__(self, filepath, batchsize=500, fields=None, output_format=None, ignore_keys=[], meta={}, safe_headers=False):
self.fd = open(filepath, "r")
self.options = OrderedDict()
self.firstRun = True
self.filtered_fields = fields
self.batchsize = batchsize
self.output_format = output_format
self.ignore_keys = ignore_keys
self.meta = meta
self.safe_headers = safe_headers
# Convert ' to " in meta string
meta = loads(dumps(meta).replace("'", '"'))
# Read the header option lines
l = self.fd.readline().strip()
while l.strip().startswith("#"):
# Parse the options out
if l.startswith("#separator"):
key = str(l[1:].split(" ")[0])
value = str.encode(l[1:].split(
" ")[1].strip()).decode('unicode_escape')
self.options[key] = value
elif l.startswith("#"):
key = str(l[1:].split(self.options.get('separator'))[0])
value = l[1:].split(self.options.get('separator'))[1:]
self.options[key] = value
# Read the next line
l = self.fd.readline().strip()
self.firstLine = l
# Save mapping of fields to values:
self.fields = self.options.get('fields')
self.types = self.options.get('types')
self.data_types = {}
for i, val in enumerate(self.fields):
# Convert field names if safe_headers is enabled
if self.safe_headers is True:
self.fields[i] = self.fields[i].replace(".", "_")
# Match types with each other
self.data_types[self.fields[i]] = self.types[i]
def __del__(self):
self.fd.close()
def __iter__(self):
return self
def __next__(self):
retVal = ""
if self.firstRun is True:
retVal = self.firstLine
self.firstRun = False
else:
retVal = self.fd.readline().strip()
# If an empty string is returned, readline is done reading
if retVal == "" or retVal is None:
raise StopIteration
# Split out the data we are going to return
retVal = retVal.split(self.options.get('separator'))
record = None
# Make sure we aren't dealing with a comment line
if len(retVal) > 0 and not str(retVal[0]).strip().startswith("#") \
and len(retVal) is len(self.options.get("fields")):
record = OrderedDict()
# Prepare fields for conversion
for x in range(0, len(retVal)):
if self.safe_headers is True:
converted_field_name = self.options.get(
"fields")[x].replace(".", "_")
else:
converted_field_name = self.options.get("fields")[x]
if self.filtered_fields is None or converted_field_name in self.filtered_fields:
# Translate - to "" to fix a conversation error
if retVal[x] == "-":
retVal[x] = ""
# Save the record field if the field isn't filtered out
record[converted_field_name] = retVal[x]
# Convert values to the appropriate record type
record = self.convert_values(
record, self.ignore_keys, self.data_types)
if record is not None and self.output_format == "json":
# Output will be json
# Add metadata to json
for k, v in self.meta.items():
record[k] = v
retVal = record
elif record is not None and self.output_format == "csv":
retVal = ""
# Add escaping to csv format
for k, v in record.items():
# Add escaping to string values
if isinstance(v, str):
retVal += str("\"" + str(v).strip() + "\"" + ",")
else:
retVal += str(str(v).strip() + ",")
# Remove the trailing comma
retVal = retVal[:-1]
else:
retVal = None
return retVal
def convert_values(self, data, ignore_keys=[], data_types={}):
keys_to_delete = []
for k, v in data.items():
# print("evaluating k: " + str(k) + " v: " + str(v))
if isinstance(v, dict):
data[k] = self.convert_values(v)
else:
if data_types.get(k) is not None:
if (data_types.get(k) == "port" or data_types.get(k) == "count"):
if v != "":
data[k] = int(v)
else:
keys_to_delete.append(k)
elif (data_types.get(k) == "double" or data_types.get(k) == "interval"):
if v != "":
data[k] = float(v)
else:
keys_to_delete.append(k)
elif data_types.get(k) == "bool":
data[k] = bool(v)
else:
data[k] = v
for k in keys_to_delete:
del data[k]
return data
def get_fields(self):
"""Returns all fields present in the log file
Returns:
A python list containing all field names in the log file
"""
field_names = ""
if self.output_format == "csv":
for i, v in enumerate(self.fields):
if self.filtered_fields is None or v in self.filtered_fields:
field_names += str(v) + ","
# Remove the trailing comma
field_names = field_names[:-1].strip()
else:
field_names = []
for i, v in enumerate(self.fields):
if self.filtered_fields is None or v in self.filtered_fields:
field_names.append(v)
return field_names
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from json import loads, dumps
from collections import OrderedDict
from datetime import datetime
from traceback import print_exc
# Taken from https://github.com/dgunter/ParseZeekLogs <3
class ParseZeekLogs(object):
"""
Class that parses Zeek logs and allows log data to be output in CSV or json format.
Attributes: filepath: Path of Zeek log file to read
"""
def __init__(self, filepath, batchsize=500, fields=None, output_format=None, ignore_keys=[], meta={}, safe_headers=False):
self.fd = open(filepath, "r")
self.options = OrderedDict()
self.firstRun = True
self.filtered_fields = fields
self.batchsize = batchsize
self.output_format = output_format
self.ignore_keys = ignore_keys
self.meta = meta
self.safe_headers = safe_headers
# Convert ' to " in meta string
meta = loads(dumps(meta).replace("'", '"'))
# Read the header option lines
l = self.fd.readline(5_000_000).strip()
while l.strip().startswith("#"):
# Parse the options out
if l.startswith("#separator"):
key = str(l[1:].split(" ")[0])
value = str.encode(l[1:].split(
" ")[1].strip()).decode('unicode_escape')
self.options[key] = value
elif l.startswith("#"):
key = str(l[1:].split(self.options.get('separator'))[0])
value = l[1:].split(self.options.get('separator'))[1:]
self.options[key] = value
# Read the next line
l = self.fd.readline(5_000_000).strip()
self.firstLine = l
# Save mapping of fields to values:
self.fields = self.options.get('fields')
self.types = self.options.get('types')
self.data_types = {}
for i, val in enumerate(self.fields):
# Convert field names if safe_headers is enabled
if self.safe_headers is True:
self.fields[i] = self.fields[i].replace(".", "_")
# Match types with each other
self.data_types[self.fields[i]] = self.types[i]
def __del__(self):
self.fd.close()
def __iter__(self):
return self
def __next__(self):
retVal = ""
if self.firstRun is True:
retVal = self.firstLine
self.firstRun = False
else:
retVal = self.fd.readline().strip()
# If an empty string is returned, readline is done reading
if retVal == "" or retVal is None:
raise StopIteration
# Split out the data we are going to return
retVal = retVal.split(self.options.get('separator'))
record = None
# Make sure we aren't dealing with a comment line
if len(retVal) > 0 and not str(retVal[0]).strip().startswith("#") \
and len(retVal) is len(self.options.get("fields")):
record = OrderedDict()
# Prepare fields for conversion
for x in range(0, len(retVal)):
if self.safe_headers is True:
converted_field_name = self.options.get(
"fields")[x].replace(".", "_")
else:
converted_field_name = self.options.get("fields")[x]
if self.filtered_fields is None or converted_field_name in self.filtered_fields:
# Translate - to "" to fix a conversation error
if retVal[x] == "-":
retVal[x] = ""
# Save the record field if the field isn't filtered out
record[converted_field_name] = retVal[x]
# Convert values to the appropriate record type
record = self.convert_values(
record, self.ignore_keys, self.data_types)
if record is not None and self.output_format == "json":
# Output will be json
# Add metadata to json
for k, v in self.meta.items():
record[k] = v
retVal = record
elif record is not None and self.output_format == "csv":
retVal = ""
# Add escaping to csv format
for k, v in record.items():
# Add escaping to string values
if isinstance(v, str):
retVal += str("\"" + str(v).strip() + "\"" + ",")
else:
retVal += str(str(v).strip() + ",")
# Remove the trailing comma
retVal = retVal[:-1]
else:
retVal = None
return retVal
def convert_values(self, data, ignore_keys=[], data_types={}):
keys_to_delete = []
for k, v in data.items():
# print("evaluating k: " + str(k) + " v: " + str(v))
if isinstance(v, dict):
data[k] = self.convert_values(v)
else:
if data_types.get(k) is not None:
if (data_types.get(k) == "port" or data_types.get(k) == "count"):
if v != "":
data[k] = int(v)
else:
keys_to_delete.append(k)
elif (data_types.get(k) == "double" or data_types.get(k) == "interval"):
if v != "":
data[k] = float(v)
else:
keys_to_delete.append(k)
elif data_types.get(k) == "bool":
data[k] = bool(v)
else:
data[k] = v
for k in keys_to_delete:
del data[k]
return data
def get_fields(self):
"""Returns all fields present in the log file
Returns:
A python list containing all field names in the log file
"""
field_names = ""
if self.output_format == "csv":
for i, v in enumerate(self.fields):
if self.filtered_fields is None or v in self.filtered_fields:
field_names += str(v) + ","
# Remove the trailing comma
field_names = field_names[:-1].strip()
else:
field_names = []
for i, v in enumerate(self.fields):
if self.filtered_fields is None or v in self.filtered_fields:
field_names.append(v)
return field_names