Traditional JavaScript focuses on functions and prototype-based inheritance as the basic means of building up reusable components,
but this may feel a bit awkward to programmers more comfortable with an object-oriented approach, where classes inherit functionality
and objects are built from these classes.
Starting with ECMAScript 2015, also known as ECMAScript 6, JavaScript programmers will be able to build their applications using
this object-oriented class-based approach. TypeScript, allows you to use these techniques now, compiling them
down to JavaScript that works across all major browsers and platforms, without having to wait for the next version of JavaScript.
Let's take a look at a simple class-based example:
```ts
class Greeter {
greeting: string;
constructor(message: string) {
this.greeting = message;
}
greet() {
return "Hello, " + this.greeting;
}
}
let greeter = new Greeter("world");
```
We declare a new class `Greeter`. This class has three members: a property called `greeting`, a constructor, and a method `greet`.
You'll notice that in the class when we refer to one of the members of the class we prepend `this.`.
This denotes that it's a member access.
In the last line we construct an instance of the `Greeter` class using `new`.
This calls into the constructor we defined earlier, creating a new object with the `Greeter` shape, and running the constructor to initialize it.
# Inheritance
### ~hint
### Inheritance is not supported yet for the micro:bit. Coming soon...
### ~
In TypeScript, we can use common object-oriented patterns.
Of course, one of the most fundamental patterns in class-based programming is being able to extend existing classes to create new ones using inheritance.
new Animal("Cat").name; // Error: 'name' is private;
```
TypeScript is a structural type system.
When we compare two different types, regardless of where they came from, if the types of all members are compatible, then we say the types themselves are compatible.
However, when comparing types that have `private` and `protected` members, we treat these types differently.
For two types to be considered compatible, if one of them has a `private` member,
then the other must have a `private` member that originated in the same declaration.
The same applies to `protected` members.
Let's look at an example to better see how this plays out in practice:
let dad = new Octopus("Man with the 8 strong legs");
dad.name = "Man with the 3-piece suit"; // error! name is readonly.
```
## Parameter properties
In our last example, we had to declare a readonly member `name` and a constructor parameter `theName` in the `Octopus` class, and we then immediately set `name` to `theName`.
This turns out to be a very common practice.
*Parameter properties* let you create and initialize a member in one place.
Here's a further revision of the previous `Octopus` class using a parameter property:
Notice how we dropped `theName` altogether and just use the shortened `readonly name: string` parameter on the constructor to create and initialize the `name` member.
We've consolidated the declarations and assignment into one location.
Parameter properties are declared by prefixing a constructor parameter with an accessibility modifier or `readonly`, or both.
Using `private` for a parameter property declares and initializes a private member; likewise, the same is done for `public`, `protected`, and `readonly`.