pxt-calliope/libs/core/pxt.cpp

749 lines
16 KiB
C++
Raw Normal View History

#include "pxt.h"
#include <map>
MicroBit uBit;
namespace pxt {
int incr(uint32_t e)
{
if (e) {
if (hasVTable(e))
((RefObject*)e)->ref();
else
((RefCounted*)e)->incr();
}
return e;
}
void decr(uint32_t e)
{
if (e) {
if (hasVTable(e))
((RefObject*)e)->unref();
else
((RefCounted*)e)->decr();
}
}
Action mkAction(int reflen, int totallen, int startptr)
{
check(0 <= reflen && reflen <= totallen, ERR_SIZE, 1);
check(reflen <= totallen && totallen <= 255, ERR_SIZE, 2);
check(bytecode[startptr] == 0xffff, ERR_INVALID_BINARY_HEADER, 3);
check(bytecode[startptr + 1] == 0, ERR_INVALID_BINARY_HEADER, 4);
uint32_t tmp = (uint32_t)&bytecode[startptr];
if (totallen == 0) {
return tmp; // no closure needed
}
void *ptr = ::operator new(sizeof(RefAction) + totallen * sizeof(uint32_t));
RefAction *r = new (ptr) RefAction();
r->len = totallen;
r->reflen = reflen;
r->func = (ActionCB)((tmp + 4) | 1);
memset(r->fields, 0, r->len * sizeof(uint32_t));
return (Action)r;
}
uint32_t runAction3(Action a, int arg0, int arg1, int arg2)
{
if (hasVTable(a))
return ((RefAction*)a)->runCore(arg0, arg1, arg2);
else {
check(*(uint16_t*)a == 0xffff, ERR_INVALID_BINARY_HEADER, 4);
return ((ActionCB)((a + 4) | 1))(NULL, arg0, arg1, arg2);
}
}
uint32_t runAction2(Action a, int arg0, int arg1)
{
return runAction3(a, arg0, arg1, 0);
}
uint32_t runAction1(Action a, int arg0)
{
return runAction3(a, arg0, 0, 0);
}
uint32_t runAction0(Action a)
{
return runAction3(a, 0, 0, 0);
}
RefRecord* mkClassInstance(int vtableOffset)
{
VTable *vtable = (VTable*)&bytecode[vtableOffset];
intcheck(vtable->methods[0] == &RefRecord_destroy, ERR_SIZE, 3);
intcheck(vtable->methods[1] == &RefRecord_print, ERR_SIZE, 4);
void *ptr = ::operator new(vtable->numbytes);
RefRecord *r = new (ptr) RefRecord(PXT_VTABLE_TO_INT(vtable));
memset(r->fields, 0, vtable->numbytes - sizeof(RefRecord));
return r;
}
uint32_t RefRecord::ld(int idx)
{
//intcheck((reflen == 255 ? 0 : reflen) <= idx && idx < len, ERR_OUT_OF_BOUNDS, 1);
return fields[idx];
}
uint32_t RefRecord::ldref(int idx)
{
//printf("LD %p len=%d reflen=%d idx=%d\n", this, len, reflen, idx);
//intcheck(0 <= idx && idx < reflen, ERR_OUT_OF_BOUNDS, 2);
uint32_t tmp = fields[idx];
incr(tmp);
return tmp;
}
void RefRecord::st(int idx, uint32_t v)
{
//intcheck((reflen == 255 ? 0 : reflen) <= idx && idx < len, ERR_OUT_OF_BOUNDS, 3);
fields[idx] = v;
}
void RefRecord::stref(int idx, uint32_t v)
{
//printf("ST %p len=%d reflen=%d idx=%d\n", this, len, reflen, idx);
//intcheck(0 <= idx && idx < reflen, ERR_OUT_OF_BOUNDS, 4);
decr(fields[idx]);
fields[idx] = v;
}
void RefObject::destroy() {
((RefObjectMethod)getVTable()->methods[0])(this);
}
void RefObject::print() {
((RefObjectMethod)getVTable()->methods[1])(this);
}
void RefRecord_destroy(RefRecord *r) {
auto tbl = r->getVTable();
uint8_t *refmask = (uint8_t*)&tbl->methods[tbl->userdata & 0xff];
int len = (tbl->numbytes >> 2) - 1;
for (int i = 0; i < len; ++i) {
if (refmask[i]) decr(r->fields[i]);
r->fields[i] = 0;
}
//RefRecord is allocated using placement new
r->~RefRecord();
::operator delete(r);
}
void RefRecord_print(RefRecord *r)
{
printf("RefRecord %p r=%d size=%d bytes\n", r, r->refcnt, r->getVTable()->numbytes);
}
uint32_t Segment::get(uint32_t i)
{
#ifdef DEBUG_BUILD
printf("In Segment::get index:%u\n", i);
this->print();
#endif
if (i < length)
{
return data[i];
}
2017-01-09 03:43:14 +01:00
return Segment::DefaultValue;
}
void Segment::set(uint32_t i, uint32_t value)
{
if (i < size)
{
data[i] = value;
}
else if (i < Segment::MaxSize)
{
growByMin(i + 1);
data[i] = value;
}
if (length <= i)
{
length = i + 1;
}
#ifdef DEBUG_BUILD
printf("In Segment::set\n");
this->print();
#endif
return;
}
uint16_t Segment::growthFactor(uint16_t size)
{
if (size == 0)
{
return 4;
}
if (size < 64)
{
return size * 2; // Double
}
if (size < 512)
{
return size * 5/3; //Grow by 1.66 rate
}
return size + 256; //Grow by constant rate
}
void Segment::growByMin(uint16_t minSize)
{
growBy(max(minSize, growthFactor(size)));
}
void Segment::growBy(uint16_t newSize)
{
#ifdef DEBUG_BUILD
printf("growBy: %d\n", newSize);
this->print();
#endif
if (size < newSize)
{
//this will throw if unable to allocate
uint32_t *tmp = (uint32_t*)(::operator new(newSize * sizeof(uint32_t)));
//Copy existing data
if (size)
{
memcpy(tmp, data, size * sizeof(uint32_t));
}
2017-01-09 03:43:14 +01:00
//fill the rest with default value
memset(tmp + size, Segment::DefaultValue, (newSize - size) * sizeof(uint32_t));
//free older segment;
::operator delete(data);
data = tmp;
size = newSize;
#ifdef DEBUG_BUILD
printf("growBy - after reallocation\n");
this->print();
#endif
}
//else { no shrinking yet; }
return;
}
void Segment::ensure(uint16_t newSize)
{
if (newSize < size)
{
return;
}
growByMin(newSize);
}
void Segment::setLength(uint32_t newLength)
{
if (newLength > size)
{
ensure(length);
}
length = newLength;
return;
}
void Segment::push(uint32_t value)
{
this->set(length, value);
}
uint32_t Segment::pop()
{
#ifdef DEBUG_BUILD
printf("In Segment::pop\n");
this->print();
#endif
if (length > 0)
{
uint32_t value = data[length];
2017-01-09 03:43:14 +01:00
data[length] = Segment::DefaultValue;
--length;
return value;
}
2017-01-09 03:43:14 +01:00
return Segment::DefaultValue;
}
//this function removes an element at index i and shifts the rest of the elements to
//left to fill the gap
uint32_t Segment::remove(uint32_t i)
{
#ifdef DEBUG_BUILD
printf("In Segment::remove index:%u\n", i);
this->print();
#endif
if (i < length)
{
//value to return
uint32_t ret = data[i];
if (i + 1 < length)
{
//Move the rest of the elements to fill in the gap.
memmove(data + i, data + i + 1, (length - i - 1) * sizeof(uint32_t));
}
length--;
2017-01-09 03:43:14 +01:00
data[length] = Segment::DefaultValue;
#ifdef DEBUG_BUILD
printf("After Segment::remove index:%u\n", i);
this->print();
#endif
return ret;
}
2017-01-09 03:43:14 +01:00
return Segment::DefaultValue;
}
//this function inserts element value at index i by shifting the rest of the elements right.
void Segment::insert(uint32_t i, uint32_t value)
{
#ifdef DEBUG_BUILD
printf("In Segment::insert index:%u value:%u\n", i, value);
this->print();
#endif
if (i < length)
{
ensure(length + 1);
if (i + 1 < length)
{
//Move the rest of the elements to fill in the gap.
memmove(data + i + 1, data + i, (length - i) * sizeof(uint32_t));
}
data[i] = value;
length++;
}
else
{
//This is insert beyond the length, just call set which will adjust the length
set(i, value);
}
#ifdef DEBUG_BUILD
printf("After Segment::insert index:%u\n", i);
this->print();
#endif
}
void Segment::print()
{
printf("Segment: %x, length: %u, size: %u\n", data, (uint)length, (uint)size);
for(uint i = 0; i < size; i++)
{
printf("%d ",(uint)data[i]);
}
printf("\n");
}
bool Segment::isValidIndex(uint32_t i)
{
2017-01-09 03:43:14 +01:00
if (i > length)
{
return false;
}
return true;
}
void Segment::destroy()
{
#ifdef DEBUG_BUILD
printf("In Segment::destroy\n");
this->print();
#endif
length = size = 0;
::operator delete(data);
data = nullptr;
}
void RefCollection::push(uint32_t x)
{
if (isRef()) incr(x);
head.push(x);
}
uint32_t RefCollection::pop()
{
uint32_t ret = head.pop();
if (isRef())
{
incr(ret);
}
return ret;
}
uint32_t RefCollection::getAt(int i)
{
uint32_t tmp = head.get(i);
if (isRef())
{
incr(tmp);
}
return tmp;
}
uint32_t RefCollection::removeAt(int i)
{
if (isRef())
{
decr(head.get(i));
}
return head.remove(i);
}
void RefCollection::insertAt(int i, uint32_t value)
{
head.insert(i, value);
if (isRef())
{
incr(value);
}
}
void RefCollection::setAt(int i, uint32_t value)
{
if (isRef())
{
if (head.isValidIndex((uint32_t)i))
{
decr(head.get(i));
}
incr(value);
}
head.set(i, value);
}
int RefCollection::indexOf(uint32_t x, int start)
{
if (isString())
{
StringData *xx = (StringData*)x;
uint32_t i = start;
2017-01-09 03:43:14 +01:00
while(head.isValidIndex(i))
{
StringData *ee = (StringData*)head.get(i);
2017-01-09 03:43:14 +01:00
if (ee == xx)
{
//handles ee being null
return (int) i;
}
if (ee && xx->len == ee->len && memcmp(xx->data, ee->data, xx->len) == 0)
{
return (int)i;
}
2017-01-09 03:43:14 +01:00
i++;
}
}
else
{
uint32_t i = start;
2017-01-09 03:43:14 +01:00
while(head.isValidIndex(i))
{
if (head.get(i) == x)
{
return (int)i;
}
2017-01-09 03:43:14 +01:00
i++;
}
}
return -1;
}
int RefCollection::removeElement(uint32_t x)
{
int idx = indexOf(x, 0);
if (idx >= 0) {
removeAt(idx);
return 1;
}
return 0;
}
namespace Coll0 {
PXT_VTABLE_BEGIN(RefCollection, 0, 0)
PXT_VTABLE_END
}
namespace Coll1 {
PXT_VTABLE_BEGIN(RefCollection, 1, 0)
PXT_VTABLE_END
}
namespace Coll3 {
PXT_VTABLE_BEGIN(RefCollection, 3, 0)
PXT_VTABLE_END
}
RefCollection::RefCollection(uint16_t flags) : RefObject(0) {
switch (flags) {
case 0:
vtable = PXT_VTABLE_TO_INT(&Coll0::RefCollection_vtable);
break;
case 1:
vtable = PXT_VTABLE_TO_INT(&Coll1::RefCollection_vtable);
break;
case 3:
vtable = PXT_VTABLE_TO_INT(&Coll3::RefCollection_vtable);
break;
default:
error(ERR_SIZE);
break;
}
}
void RefCollection::destroy()
{
if (this->isRef())
{
2017-01-09 03:43:14 +01:00
for(uint32_t i = 0; i < this->head.getLength(); i++)
{
decr(this->head.get(i));
}
}
this->head.destroy();
delete this;
}
void RefCollection::print()
{
printf("RefCollection %p r=%d flags=%d size=%d\n", this, refcnt, getFlags(), head.getLength());
head.print();
}
PXT_VTABLE_CTOR(RefAction) {}
// fields[] contain captured locals
void RefAction::destroy()
{
for (int i = 0; i < this->reflen; ++i) {
decr(fields[i]);
fields[i] = 0;
}
//RefAction is allocated using placement new
this->~RefAction();
::operator delete(this);
}
void RefAction::print()
{
printf("RefAction %p r=%d pc=0x%lx size=%d (%d refs)\n", this, refcnt, (const uint8_t*)func - (const uint8_t*)bytecode, len, reflen);
}
void RefLocal::print()
{
printf("RefLocal %p r=%d v=%d\n", this, refcnt, v);
}
void RefLocal::destroy()
{
delete this;
}
PXT_VTABLE_CTOR(RefLocal) {
v = 0;
}
PXT_VTABLE_CTOR(RefRefLocal) {
v = 0;
}
void RefRefLocal::print()
{
printf("RefRefLocal %p r=%d v=%p\n", this, refcnt, (void*)v);
}
void RefRefLocal::destroy()
{
decr(v);
delete this;
}
PXT_VTABLE_BEGIN(RefMap, 0, RefMapMarker)
PXT_VTABLE_END
RefMap::RefMap() : PXT_VTABLE_INIT(RefMap) {}
void RefMap::destroy() {
for (unsigned i = 0; i < data.size(); ++i) {
if (data[i].key & 1) {
decr(data[i].val);
}
data[i].val = 0;
}
data.resize(0);
delete this;
}
int RefMap::findIdx(uint32_t key) {
for (unsigned i = 0; i < data.size(); ++i) {
if (data[i].key >> 1 == key)
return i;
}
return -1;
}
void RefMap::print()
{
printf("RefMap %p r=%d size=%d\n", this, refcnt, data.size());
}
#ifdef DEBUG_MEMLEAKS
std::set<RefObject*> allptrs;
void debugMemLeaks()
{
printf("LIVE POINTERS:\n");
for(std::set<RefObject*>::iterator itr = allptrs.begin();itr!=allptrs.end();itr++)
{
(*itr)->print();
}
printf("\n");
}
#else
void debugMemLeaks() {}
#endif
// ---------------------------------------------------------------------------
// An adapter for the API expected by the run-time.
// ---------------------------------------------------------------------------
map<pair<int, int>, Action> handlersMap;
MicroBitEvent lastEvent;
// We have the invariant that if [dispatchEvent] is registered against the DAL
// for a given event, then [handlersMap] contains a valid entry for that
// event.
void dispatchEvent(MicroBitEvent e) {
lastEvent = e;
Action curr = handlersMap[{ e.source, e.value }];
if (curr)
runAction1(curr, e.value);
curr = handlersMap[{ e.source, MICROBIT_EVT_ANY }];
if (curr)
runAction1(curr, e.value);
}
void registerWithDal(int id, int event, Action a) {
Action prev = handlersMap[{ id, event }];
if (prev)
decr(prev);
else
uBit.messageBus.listen(id, event, dispatchEvent);
incr(a);
handlersMap[{ id, event }] = a;
}
void fiberDone(void *a)
{
decr((Action)a);
release_fiber();
}
void runInBackground(Action a) {
if (a != 0) {
incr(a);
create_fiber((void(*)(void*))runAction0, (void*)a, fiberDone);
}
}
void error(ERROR code, int subcode)
{
printf("Error: %d [%d]\n", code, subcode);
uBit.panic(42);
}
uint16_t *bytecode;
uint32_t *globals;
int numGlobals;
uint32_t *allocate(uint16_t sz)
{
uint32_t *arr = new uint32_t[sz];
memset(arr, 0, sz * 4);
return arr;
}
void checkStr(bool cond, const char *msg)
{
if (!cond) {
while (true) {
uBit.display.scroll(msg, 100);
uBit.sleep(100);
}
}
}
int templateHash()
{
return ((int*)bytecode)[4];
}
int programHash()
{
return ((int*)bytecode)[6];
}
int getNumGlobals()
{
return bytecode[16];
}
void exec_binary(int32_t *pc)
{
// XXX re-enable once the calibration code is fixed and [editor/embedded.ts]
// properly prepends a call to [internal_main].
// ::touch_develop::internal_main();
// unique group for radio based on source hash
// ::touch_develop::micro_bit::radioDefaultGroup = programHash();
// repeat error 4 times and restart as needed
microbit_panic_timeout(4);
int32_t ver = *pc++;
checkStr(ver == 0x4209, ":( Bad runtime version");
bytecode = *((uint16_t**)pc++); // the actual bytecode is here
globals = allocate(getNumGlobals());
// just compare the first word
checkStr(((uint32_t*)bytecode)[0] == 0x923B8E70 &&
templateHash() == *pc,
":( Failed partial flash");
uint32_t startptr = (uint32_t)bytecode;
startptr += 48; // header
startptr |= 1; // Thumb state
((uint32_t (*)())startptr)();
#ifdef DEBUG_MEMLEAKS
pxt::debugMemLeaks();
#endif
return;
}
void start()
{
exec_binary((int32_t*)functionsAndBytecode);
}
}
// vim: ts=2 sw=2 expandtab