Use the plot bar chart to visualize the acceleration on the LED screen of the micro:bit in the specified range. You implement plot Bar Graph to display a vertical bar graph based on the "value" and "high" value. Then you must insert acceleration in the X dimension to measure the acceleration.
Notice that moving the micro:bit in the simulator from left to right (x direction) changes the values beneath the micro:bit in a range from 1023 to -1023 as measured in milli-gravities. By hovering over the micro:bit from left to right, you can observe changing values beneath the micro:bit simulator. Also, the LEDs shown on the Bar Graph fluctates based on the movement of the micro:bit simulator in the x direction. The line underneath the micro:bit simulator reflect the acceleration in the x direction.
NOTE: The colors of the charts reflect the color of the micro:bit simulator. In this instance, the micro:bit is yellow. So the color of the data line reflects the color of the micro:bit
Vigorously move the micro:bit in the micro:bit simulatator by moving the micro:bit image from side to side. Every time the micro:bit moves in the x direction in the simulator, you are generating data points that can be reviewed in Excel. The more attempts to move the micro:bit from side to side, the more data being saved in Excel. After you have vigarously moved the micro:bit simulator from side to side for a sufficient amount of time, you are ready to graph or chart the accceleration of the micro:bit. We want a printout of our acceleration on Excel that can be graphed in Excel.
The final part of this experiment is opening and reviewing the data in the Excel CSV file. Simply click on the line beneath the simulator. A CSV file will be generated to display the data points collected by moving the micro:bit in the X direction. Then click or tap on the data Excel file that was downloaded to your local Downloads Folder.
Welcome! The activity will teach you how to use the acceleration of the 1st micro:bit and to visualize the acceleration on the 2nd micro:bit. Let's get started!
Let's measure `acceleration (mg)` and then `send number`. `Acceleration` is measured in **milli-gravities**, so a value of -1000 is equivalent to -1g or -9.81m/s^2. We will be able to get the acceleration value (g-force), in the specified "x" dimension. `Send number` will broadcast a number data packet to other micro:bits connected via radio.
Finally, we want to chart the acceleration. So we must first implement `plot bar graph`. `Plot Bar Graph` will display a vertical bar graph based on the value and high value. In order to transfer the receive the number from the 1st micro:bit, we must implement `receive number` to constantly display a vertical bar graph based on the value. Remember, the value will equal to the micro:bit's acceleration in the "x" direction.
Notice that moving the micro:bit the farthest direction in the x direction will be -1023 on the charting beneath the simulator. The second observation will be that the LEDs will be full brightness on the 2nd micro:bit. There is a single LED turned on with the 1st micro:bit. Additionally, the graphs will reflect 0 acceleation for the 1st micro:bit. In this scenario, if you are adjusting the acceleration in the simualator, you are also changing your chart that will be produced.
NOTE: The colors of the charts reflect the color of the micro:bit simulator. In this instance, the micro:bits are blue and green. So the colors of the line graphs reflect the colors of the micro:bit
After running this simulatation several seconds by moving the micro:bit side to side in the x direction, you are ready to graph or chart the accceleration of the micro:bit. We want a printout of our acceleration on Excel. We will graph the fluctuating acceleration of the simulation experiment.