Pull common files from pxt-common-packages (#1165)

This commit is contained in:
Michał Moskal 2018-09-10 10:11:41 -07:00 committed by GitHub
parent 72f1276038
commit 20500fb9ae
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 16 additions and 2775 deletions

View File

@ -1,356 +0,0 @@
#include "pxtbase.h"
#include <limits.h>
using namespace std;
//% indexerGet=BufferMethods::getByte indexerSet=BufferMethods::setByte
namespace BufferMethods {
//%
uint8_t *getBytes(Buffer buf) {
return buf->data;
}
//%
int getByte(Buffer buf, int off) {
if (buf && 0 <= off && off < buf->length)
return buf->data[off];
return 0;
}
//%
void setByte(Buffer buf, int off, int v) {
if (buf && 0 <= off && off < buf->length)
buf->data[off] = v;
}
int writeBuffer(Buffer buf, int dstOffset, Buffer src, int srcOffset = 0, int length = -1) {
if (length < 0)
length = src->length;
if (srcOffset < 0 || dstOffset < 0 || dstOffset > buf->length)
return -1;
length = min(src->length - srcOffset, buf->length - dstOffset);
if (length < 0)
return -1;
if (buf == src) {
memmove(buf->data + dstOffset, src->data + srcOffset, length);
} else {
memcpy(buf->data + dstOffset, src->data + srcOffset, length);
}
return 0;
}
/**
* Write a number in specified format in the buffer.
*/
//%
void setNumber(Buffer buf, NumberFormat format, int offset, TNumber value) {
if (offset < 0)
return;
setNumberCore(buf->data + offset, buf->length - offset, format, value);
}
/**
* Read a number in specified format from the buffer.
*/
//%
TNumber getNumber(Buffer buf, NumberFormat format, int offset) {
if (offset < 0)
return fromInt(0);
return getNumberCore(buf->data + offset, buf->length - offset, format);
}
/** Returns the length of a Buffer object. */
//% property
int length(Buffer s) {
return s->length;
}
/**
* Fill (a fragment) of the buffer with given value.
*/
//%
void fill(Buffer buf, int value, int offset = 0, int length = -1) {
if (offset < 0 || offset > buf->length)
return; // DEVICE_INVALID_PARAMETER;
if (length < 0)
length = buf->length;
length = min(length, buf->length - offset);
memset(buf->data + offset, value, length);
}
/**
* Return a copy of a fragment of a buffer.
*/
//%
Buffer slice(Buffer buf, int offset = 0, int length = -1) {
offset = min((int)buf->length, offset);
if (length < 0)
length = buf->length;
length = min(length, buf->length - offset);
return mkBuffer(buf->data + offset, length);
}
/**
* Shift buffer left in place, with zero padding.
* @param offset number of bytes to shift; use negative value to shift right
* @param start start offset in buffer. Default is 0.
* @param length number of elements in buffer. If negative, length is set as the buffer length minus
* start. eg: -1
*/
//%
void shift(Buffer buf, int offset, int start = 0, int length = -1) {
if (length < 0)
length = buf->length - start;
if (start < 0 || start + length > buf->length || start + length < start || length == 0 ||
offset == 0 || offset == INT_MIN)
return;
if (offset <= -length || offset >= length) {
fill(buf, 0);
return;
}
uint8_t *data = buf->data + start;
if (offset < 0) {
offset = -offset;
memmove(data + offset, data, length - offset);
memset(data, 0, offset);
} else {
length = length - offset;
memmove(data, data + offset, length);
memset(data + length, 0, offset);
}
}
/**
* Convert a buffer to its hexadecimal representation.
*/
//%
String toHex(Buffer buf) {
const char *hex = "0123456789abcdef";
auto res = mkString(NULL, buf->length * 2);
for (int i = 0; i < buf->length; ++i) {
res->data[i << 1] = hex[buf->data[i] >> 4];
res->data[(i << 1) + 1] = hex[buf->data[i] & 0xf];
}
return res;
}
/**
* Rotate buffer left in place.
* @param offset number of bytes to shift; use negative value to shift right
* @param start start offset in buffer. Default is 0.
* @param length number of elements in buffer. If negative, length is set as the buffer length minus
* start. eg: -1
*/
//%
void rotate(Buffer buf, int offset, int start = 0, int length = -1) {
if (length < 0)
length = buf->length - start;
if (start < 0 || start + length > buf->length || start + length < start || length == 0 ||
offset == 0 || offset == INT_MIN)
return;
if (offset < 0)
offset += length << 8; // try to make it positive
offset %= length;
if (offset < 0)
offset += length;
uint8_t *data = buf->data + start;
uint8_t *n_first = data + offset;
uint8_t *first = data;
uint8_t *next = n_first;
uint8_t *last = data + length;
while (first != next) {
uint8_t tmp = *first;
*first++ = *next;
*next++ = tmp;
if (next == last) {
next = n_first;
} else if (first == n_first) {
n_first = next;
}
}
}
/**
* Write contents of `src` at `dstOffset` in current buffer.
*/
//%
void write(Buffer buf, int dstOffset, Buffer src) {
// srcOff and length not supported, we only do up to 4 args :/
writeBuffer(buf, dstOffset, src, 0, -1);
}
}
namespace control {
/**
* Create a new zero-initialized buffer.
* @param size number of bytes in the buffer
*/
//%
Buffer createBuffer(int size) {
return mkBuffer(NULL, size);
}
}
namespace pxt {
static int writeBytes(uint8_t *dst, uint8_t *src, int length, bool swapBytes, int szLeft) {
if (szLeft < length) {
return -1;
}
if (swapBytes) {
uint8_t *p = dst + length;
for (int i = 0; i < length; ++i)
*--p = src[i];
} else {
if (length == 4 && ((uint32_t)dst & 3) == 0)
*(uint32_t *)dst = *(uint32_t *)src;
else if (length == 2 && ((uint32_t)dst & 1) == 0)
*(uint16_t *)dst = *(uint16_t *)src;
else
memcpy(dst, src, length);
}
return 0;
}
static int readBytes(uint8_t *src, uint8_t *dst, int length, bool swapBytes, int szLeft) {
if (szLeft < length) {
memset(dst, 0, length);
return -1;
}
if (swapBytes) {
uint8_t *p = src + length;
for (int i = 0; i < length; ++i)
dst[i] = *--p;
} else {
if (length == 4 && ((uint32_t)src & 3) == 0)
*(uint32_t *)dst = *(uint32_t *)src;
else if (length == 2 && ((uint32_t)src & 1) == 0)
*(uint16_t *)dst = *(uint16_t *)src;
else
memcpy(dst, src, length);
}
return 0;
}
void setNumberCore(uint8_t *buf, int szLeft, NumberFormat format, TNumber value) {
int8_t i8;
uint8_t u8;
int16_t i16;
uint16_t u16;
int32_t i32;
uint32_t u32;
float f32;
double f64;
// Assume little endian
#define WRITEBYTES(isz, swap, toInt) \
isz = toInt(value); \
writeBytes(buf, (uint8_t *)&isz, sizeof(isz), swap, szLeft); \
break
switch (format) {
case NumberFormat::Int8LE:
WRITEBYTES(i8, false, toInt);
case NumberFormat::UInt8LE:
WRITEBYTES(u8, false, toInt);
case NumberFormat::Int16LE:
WRITEBYTES(i16, false, toInt);
case NumberFormat::UInt16LE:
WRITEBYTES(u16, false, toInt);
case NumberFormat::Int32LE:
WRITEBYTES(i32, false, toInt);
case NumberFormat::UInt32LE:
WRITEBYTES(u32, false, toUInt);
case NumberFormat::Int8BE:
WRITEBYTES(i8, true, toInt);
case NumberFormat::UInt8BE:
WRITEBYTES(u8, true, toInt);
case NumberFormat::Int16BE:
WRITEBYTES(i16, true, toInt);
case NumberFormat::UInt16BE:
WRITEBYTES(u16, true, toInt);
case NumberFormat::Int32BE:
WRITEBYTES(i32, true, toInt);
case NumberFormat::UInt32BE:
WRITEBYTES(u32, true, toUInt);
case NumberFormat::Float32LE:
WRITEBYTES(f32, false, toFloat);
case NumberFormat::Float32BE:
WRITEBYTES(f32, true, toFloat);
case NumberFormat::Float64LE:
WRITEBYTES(f64, false, toDouble);
case NumberFormat::Float64BE:
WRITEBYTES(f64, true, toDouble);
}
}
TNumber getNumberCore(uint8_t *buf, int szLeft, NumberFormat format) {
int8_t i8;
uint8_t u8;
int16_t i16;
uint16_t u16;
int32_t i32;
uint32_t u32;
float f32;
double f64;
// Assume little endian
#define READBYTES(isz, swap, conv) \
readBytes(buf, (uint8_t *)&isz, sizeof(isz), swap, szLeft); \
return conv(isz)
switch (format) {
case NumberFormat::Int8LE:
READBYTES(i8, false, fromInt);
case NumberFormat::UInt8LE:
READBYTES(u8, false, fromInt);
case NumberFormat::Int16LE:
READBYTES(i16, false, fromInt);
case NumberFormat::UInt16LE:
READBYTES(u16, false, fromInt);
case NumberFormat::Int32LE:
READBYTES(i32, false, fromInt);
case NumberFormat::UInt32LE:
READBYTES(u32, false, fromUInt);
case NumberFormat::Int8BE:
READBYTES(i8, true, fromInt);
case NumberFormat::UInt8BE:
READBYTES(u8, true, fromInt);
case NumberFormat::Int16BE:
READBYTES(i16, true, fromInt);
case NumberFormat::UInt16BE:
READBYTES(u16, true, fromInt);
case NumberFormat::Int32BE:
READBYTES(i32, true, fromInt);
case NumberFormat::UInt32BE:
READBYTES(u32, true, fromUInt);
case NumberFormat::Float32LE:
READBYTES(f32, false, fromFloat);
case NumberFormat::Float32BE:
READBYTES(f32, true, fromFloat);
case NumberFormat::Float64LE:
READBYTES(f64, false, fromDouble);
case NumberFormat::Float64BE:
READBYTES(f64, true, fromDouble);
}
return 0;
}
}

File diff suppressed because it is too large Load Diff

13
libs/core/platform.h Normal file
View File

@ -0,0 +1,13 @@
// helpful define to handle C++ differences in package
#define PXT_MICROBIT_TAGGED_INT 1
// cross version compatible way of access data field
#ifndef PXT_BUFFER_DATA
#define PXT_BUFFER_DATA(buffer) buffer->data
#endif
#ifndef PXT_CREATE_BUFFER
#define PXT_CREATE_BUFFER(data, len) pxt::mkBuffer(data, len)
#endif
#define PXT_POWI 1

View File

@ -1,567 +0,0 @@
#include "pxtbase.h"
using namespace std;
namespace pxt {
TValue incr(TValue e) {
if (isRefCounted(e)) {
getVTable((RefObject *)e);
#if MEMDBG_ENABLED
if (((RefObject *)e)->refcnt != 0xffff)
MEMDBG("INCR: %p refs=%d", e, ((RefObject *)e)->refcnt);
#endif
((RefObject *)e)->ref();
}
return e;
}
void decr(TValue e) {
if (isRefCounted(e)) {
#if MEMDBG_ENABLED
if (((RefObject *)e)->refcnt != 0xffff)
MEMDBG("DECR: %p refs=%d", e, ((RefObject *)e)->refcnt);
#endif
((RefObject *)e)->unref();
}
}
// TODO
Action mkAction(int reflen, int totallen, int startptr) {
check(0 <= reflen && reflen <= totallen, ERR_SIZE, 1);
check(reflen <= totallen && totallen <= 255, ERR_SIZE, 2);
check(bytecode[startptr] == 0xffff, ERR_INVALID_BINARY_HEADER, 3);
check(bytecode[startptr + 1] == PXT_REF_TAG_ACTION, ERR_INVALID_BINARY_HEADER, 4);
uintptr_t tmp = (uintptr_t)&bytecode[startptr];
if (totallen == 0) {
return (TValue)tmp; // no closure needed
}
void *ptr = ::operator new(sizeof(RefAction) + totallen * sizeof(unsigned));
RefAction *r = new (ptr) RefAction();
r->len = totallen;
r->reflen = reflen;
r->func = (ActionCB)((tmp + 4) | 1);
memset(r->fields, 0, r->len * sizeof(unsigned));
MEMDBG("mkAction: start=%p => %p", startptr, r);
return (Action)r;
}
// TODO
TValue runAction3(Action a, TValue arg0, TValue arg1, TValue arg2) {
auto aa = (RefAction *)a;
if (aa->vtable == PXT_REF_TAG_ACTION) {
check(aa->refcnt == 0xffff, ERR_INVALID_BINARY_HEADER, 4);
return ((ActionCB)(((uintptr_t)a + 4) | 1))(NULL, arg0, arg1, arg2);
} else {
check(aa->refcnt != 0xffff, ERR_INVALID_BINARY_HEADER, 4);
return aa->runCore(arg0, arg1, arg2);
}
}
TValue runAction2(Action a, TValue arg0, TValue arg1) {
return runAction3(a, arg0, arg1, 0);
}
TValue runAction1(Action a, TValue arg0) {
return runAction3(a, arg0, 0, 0);
}
TValue runAction0(Action a) {
return runAction3(a, 0, 0, 0);
}
RefRecord *mkClassInstance(int vtableOffset) {
VTable *vtable = (VTable *)&bytecode[vtableOffset];
intcheck(vtable->methods[0] == &RefRecord_destroy, ERR_SIZE, 3);
intcheck(vtable->methods[1] == &RefRecord_print, ERR_SIZE, 4);
void *ptr = ::operator new(vtable->numbytes);
RefRecord *r = new (ptr) RefRecord(PXT_VTABLE_TO_INT(vtable));
memset(r->fields, 0, vtable->numbytes - sizeof(RefRecord));
MEMDBG("mkClass: vt=%p => %p", vtable, r);
return r;
}
TValue RefRecord::ld(int idx) {
// intcheck((reflen == 255 ? 0 : reflen) <= idx && idx < len, ERR_OUT_OF_BOUNDS, 1);
return fields[idx];
}
TValue RefRecord::ldref(int idx) {
// DMESG("LD %p len=%d reflen=%d idx=%d", this, len, reflen, idx);
// intcheck(0 <= idx && idx < reflen, ERR_OUT_OF_BOUNDS, 2);
TValue tmp = fields[idx];
incr(tmp);
return tmp;
}
void RefRecord::st(int idx, TValue v) {
// intcheck((reflen == 255 ? 0 : reflen) <= idx && idx < len, ERR_OUT_OF_BOUNDS, 3);
fields[idx] = v;
}
void RefRecord::stref(int idx, TValue v) {
// DMESG("ST %p len=%d reflen=%d idx=%d", this, len, reflen, idx);
// intcheck(0 <= idx && idx < reflen, ERR_OUT_OF_BOUNDS, 4);
decr(fields[idx]);
fields[idx] = v;
}
void RefObject::destroyVT() {
((RefObjectMethod)getVTable(this)->methods[0])(this);
::operator delete(this);
}
void RefObject::printVT() {
((RefObjectMethod)getVTable(this)->methods[1])(this);
}
void RefRecord_destroy(RefRecord *r) {
VTable *tbl = getVTable(r);
uint8_t *refmask = (uint8_t *)&tbl->methods[tbl->userdata & 0xff];
int len = (tbl->numbytes >> 2) - 1;
for (int i = 0; i < len; ++i) {
if (refmask[i])
decr(r->fields[i]);
r->fields[i] = 0;
}
}
void RefRecord_print(RefRecord *r) {
DMESG("RefRecord %p r=%d size=%d bytes", r, r->refcnt, getVTable(r)->numbytes);
}
TValue Segment::get(unsigned i) {
#ifdef DEBUG_BUILD
DMESG("In Segment::get index:%d", i);
this->print();
#endif
if (i < length) {
return data[i];
}
return Segment::DefaultValue;
}
void Segment::setRef(unsigned i, TValue value) {
decr(get(i));
set(i, value);
}
void Segment::set(unsigned i, TValue value) {
if (i < size) {
data[i] = value;
} else if (i < Segment::MaxSize) {
growByMin(i + 1);
data[i] = value;
} else {
return;
}
if (length <= i) {
length = i + 1;
}
#ifdef DEBUG_BUILD
DMESG("In Segment::set");
this->print();
#endif
return;
}
ramint_t Segment::growthFactor(ramint_t size) {
if (size == 0) {
return 4;
}
if (size < 64) {
return size * 2; // Double
}
if (size < 512) {
return size * 5 / 3; // Grow by 1.66 rate
}
// Grow by constant rate
if ((unsigned)size + 256 < MaxSize)
return size + 256;
else
return MaxSize;
}
void Segment::growByMin(ramint_t minSize) {
growBy(max(minSize, growthFactor(size)));
}
void Segment::growBy(ramint_t newSize) {
#ifdef DEBUG_BUILD
DMESG("growBy: %d", newSize);
this->print();
#endif
if (size < newSize) {
// this will throw if unable to allocate
TValue *tmp = (TValue *)(::operator new(newSize * sizeof(TValue)));
// Copy existing data
if (size) {
memcpy(tmp, data, size * sizeof(TValue));
}
// fill the rest with default value
memset(tmp + size, 0, (newSize - size) * sizeof(TValue));
// free older segment;
::operator delete(data);
data = tmp;
size = newSize;
#ifdef DEBUG_BUILD
DMESG("growBy - after reallocation");
this->print();
#endif
}
// else { no shrinking yet; }
return;
}
void Segment::ensure(ramint_t newSize) {
if (newSize < size) {
return;
}
growByMin(newSize);
}
void Segment::setLength(unsigned newLength) {
if (newLength > size) {
ensure(length);
}
length = newLength;
return;
}
void Segment::push(TValue value) {
this->set(length, value);
}
TValue Segment::pop() {
#ifdef DEBUG_BUILD
DMESG("In Segment::pop");
this->print();
#endif
if (length > 0) {
--length;
TValue value = data[length];
data[length] = Segment::DefaultValue;
return value;
}
return Segment::DefaultValue;
}
// this function removes an element at index i and shifts the rest of the elements to
// left to fill the gap
TValue Segment::remove(unsigned i) {
#ifdef DEBUG_BUILD
DMESG("In Segment::remove index:%d", i);
this->print();
#endif
if (i < length) {
// value to return
TValue ret = data[i];
if (i + 1 < length) {
// Move the rest of the elements to fill in the gap.
memmove(data + i, data + i + 1, (length - i - 1) * sizeof(unsigned));
}
length--;
data[length] = Segment::DefaultValue;
#ifdef DEBUG_BUILD
DMESG("After Segment::remove index:%d", i);
this->print();
#endif
return ret;
}
return Segment::DefaultValue;
}
// this function inserts element value at index i by shifting the rest of the elements right.
void Segment::insert(unsigned i, TValue value) {
#ifdef DEBUG_BUILD
DMESG("In Segment::insert index:%d value:%d", i, value);
this->print();
#endif
if (i < length) {
ensure(length + 1);
// Move the rest of the elements to fill in the gap.
memmove(data + i + 1, data + i, (length - i) * sizeof(unsigned));
data[i] = value;
length++;
} else {
// This is insert beyond the length, just call set which will adjust the length
set(i, value);
}
#ifdef DEBUG_BUILD
DMESG("After Segment::insert index:%d", i);
this->print();
#endif
}
void Segment::print() {
DMESG("Segment: %p, length: %d, size: %d", data, (unsigned)length, (unsigned)size);
for (unsigned i = 0; i < size; i++) {
DMESG("-> %d", (unsigned)(uintptr_t)data[i]);
}
}
bool Segment::isValidIndex(unsigned i) {
if (i > length) {
return false;
}
return true;
}
void Segment::destroy() {
#ifdef DEBUG_BUILD
DMESG("In Segment::destroy");
this->print();
#endif
length = size = 0;
::operator delete(data);
data = nullptr;
}
void RefCollection::push(TValue x) {
incr(x);
head.push(x);
}
TValue RefCollection::pop() {
TValue ret = head.pop();
incr(ret);
return ret;
}
TValue RefCollection::getAt(int i) {
TValue tmp = head.get(i);
incr(tmp);
return tmp;
}
TValue RefCollection::removeAt(int i) {
return head.remove(i);
}
void RefCollection::insertAt(int i, TValue value) {
head.insert(i, value);
incr(value);
}
void RefCollection::setAt(int i, TValue value) {
incr(value);
head.setRef(i, value);
}
int RefCollection::indexOf(TValue x, int start) {
#ifndef X86_64
unsigned i = start;
while (head.isValidIndex(i)) {
if (pxt::eq_bool(head.get(i), x)) {
return (int)i;
}
i++;
}
#endif
return -1;
}
bool RefCollection::removeElement(TValue x) {
int idx = indexOf(x, 0);
if (idx >= 0) {
decr(removeAt(idx));
return 1;
}
return 0;
}
namespace Coll0 {
PXT_VTABLE_BEGIN(RefCollection, 0, 0)
PXT_VTABLE_END
} // namespace Coll0
RefCollection::RefCollection() : RefObject(0) {
vtable = PXT_VTABLE_TO_INT(&Coll0::RefCollection_vtable);
}
void RefCollection::destroy(RefCollection *t) {
for (unsigned i = 0; i < t->head.getLength(); i++) {
decr(t->head.get(i));
}
t->head.destroy();
}
void RefCollection::print(RefCollection *t) {
DMESG("RefCollection %p r=%d size=%d", t, t->refcnt, t->head.getLength());
t->head.print();
}
PXT_VTABLE_CTOR(RefAction) {}
// fields[] contain captured locals
void RefAction::destroy(RefAction *t) {
for (int i = 0; i < t->reflen; ++i) {
decr(t->fields[i]);
t->fields[i] = 0;
}
}
void RefAction::print(RefAction *t) {
DMESG("RefAction %p r=%d pc=%X size=%d (%d refs)", t, t->refcnt,
(const uint8_t *)t->func - (const uint8_t *)bytecode, t->len, t->reflen);
}
void RefLocal::print(RefLocal *t) {
DMESG("RefLocal %p r=%d v=%d", t, t->refcnt, t->v);
}
void RefLocal::destroy(RefLocal *) {}
PXT_VTABLE_CTOR(RefLocal) {
v = 0;
}
PXT_VTABLE_CTOR(RefRefLocal) {
v = 0;
}
void RefRefLocal::print(RefRefLocal *t) {
DMESG("RefRefLocal %p r=%d v=%p", t, t->refcnt, (void *)t->v);
}
void RefRefLocal::destroy(RefRefLocal *t) {
decr(t->v);
}
PXT_VTABLE_BEGIN(RefMap, 0, RefMapMarker)
PXT_VTABLE_END
RefMap::RefMap() : PXT_VTABLE_INIT(RefMap) {}
void RefMap::destroy(RefMap *t) {
for (unsigned i = 0; i < t->values.getLength(); ++i) {
decr(t->values.get(i));
t->values.set(i, 0);
}
t->keys.destroy();
t->values.destroy();
}
int RefMap::findIdx(unsigned key) {
for (unsigned i = 0; i < keys.getLength(); ++i) {
if ((uintptr_t)keys.get(i) == key)
return i;
}
return -1;
}
void RefMap::print(RefMap *t) {
DMESG("RefMap %p r=%d size=%d", t, t->refcnt, t->keys.getLength());
}
#ifdef PXT_MEMLEAK_DEBUG
std::set<TValue> allptrs;
void debugMemLeaks() {
DMESG("LIVE POINTERS:");
for (std::set<TValue>::iterator itr = allptrs.begin(); itr != allptrs.end(); itr++) {
anyPrint(*itr);
}
DMESG("LIVE POINTERS END.");
dumpDmesg();
}
#else
void debugMemLeaks() {}
#endif
void error(PXT_ERROR code, int subcode) {
DMESG("Error: %d [%d]", code, subcode);
target_panic(42);
}
uint16_t *bytecode;
TValue *globals;
unsigned *allocate(ramint_t sz) {
unsigned *arr = new unsigned[sz];
memset(arr, 0, sz * sizeof(unsigned));
return arr;
}
void checkStr(bool cond, const char *msg) {
if (!cond) {
while (true) {
// uBit.display.scroll(msg, 100);
// uBit.sleep(100);
}
}
}
int templateHash() {
return ((int *)bytecode)[4];
}
int programHash() {
return ((int *)bytecode)[6];
}
int getNumGlobals() {
return bytecode[16];
}
#ifndef X86_64
void exec_binary(unsigned *pc) {
// XXX re-enable once the calibration code is fixed and [editor/embedded.ts]
// properly prepends a call to [internal_main].
// ::touch_develop::internal_main();
// unique group for radio based on source hash
// ::touch_develop::micro_bit::radioDefaultGroup = programHash();
unsigned ver = *pc++;
checkStr(ver == 0x4209, ":( Bad runtime version");
bytecode = *((uint16_t **)pc++); // the actual bytecode is here
globals = (TValue *)allocate(getNumGlobals());
// can be any valid address, best in RAM for speed
globals[0] = (TValue)&globals;
// just compare the first word
// TODO
checkStr(((uint32_t *)bytecode)[0] == 0x923B8E70 && (unsigned)templateHash() == *pc,
":( Failed partial flash");
uintptr_t startptr = (uintptr_t)bytecode;
startptr += 48; // header
startptr |= 1; // Thumb state
initRuntime();
((unsigned (*)())startptr)();
#ifdef PXT_MEMLEAK_DEBUG
pxt::debugMemLeaks();
#endif
pxt::releaseFiber();
}
void start() {
exec_binary((unsigned *)functionsAndBytecode);
}
#endif
} // namespace pxt

View File

@ -1,7 +1,7 @@
{
"name": "core",
"description": "The microbit core library",
"installedVersion": "tsmdvf",
"additionalFilePath": "../../node_modules/pxt-common-packages/libs/base",
"files": [
"README.md",
"pxt.cpp",
@ -105,4 +105,4 @@
}
]
}
}
}

View File

@ -1,713 +0,0 @@
#ifndef __PXTBASE_H
#define __PXTBASE_H
//#define PXT_MEMLEAK_DEBUG 1
#pragma GCC diagnostic ignored "-Wunused-parameter"
#pragma GCC diagnostic ignored "-Wformat"
#pragma GCC diagnostic ignored "-Warray-bounds"
// helpful define to handle C++ differences in package
#define PXT_MICROBIT_TAGGED_INT 1
// cross version compatible way of access data field
#ifndef PXT_BUFFER_DATA
#define PXT_BUFFER_DATA(buffer) buffer->data
#endif
#ifndef PXT_CREATE_BUFFER
#define PXT_CREATE_BUFFER(data, len) pxt::mkBuffer(data, len)
#endif
// needed for gcc6; not sure why
#undef min
#undef max
#define NOLOG(...) \
do { \
} while (0)
#define MEMDBG_ENABLED 0
#define MEMDBG NOLOG
#include "pxtconfig.h"
#define intcheck(...) check(__VA_ARGS__)
//#define intcheck(...) do {} while (0)
#include <string.h>
#include <stdint.h>
#include <math.h>
#include <new>
#ifdef PXT_MEMLEAK_DEBUG
#include <set>
#endif
#include "pxtcore.h"
#ifndef PXT_VTABLE_SHIFT
#define PXT_VTABLE_SHIFT 2
#endif
#define CONCAT_1(a, b) a##b
#define CONCAT_0(a, b) CONCAT_1(a, b)
#define STATIC_ASSERT(e) enum { CONCAT_0(_static_assert_, __LINE__) = 1 / ((e) ? 1 : 0) };
#ifndef ramint_t
// this type limits size of arrays
#ifdef __linux__
#define ramint_t uint32_t
#else
#define ramint_t uint16_t
#endif
#endif
#if 0
inline void *operator new(size_t, void *p) {
return p;
}
inline void *operator new[](size_t, void *p) {
return p;
}
#endif
namespace pxt {
template <typename T> inline const T &max(const T &a, const T &b) {
if (a < b)
return b;
return a;
}
template <typename T> inline const T &min(const T &a, const T &b) {
if (a < b)
return a;
return b;
}
template <typename T> inline void swap(T &a, T &b) {
T tmp = a;
a = b;
b = tmp;
}
//
// Tagged values (assume 4 bytes for now, Cortex-M0)
//
struct TValueStruct {};
typedef TValueStruct *TValue;
typedef TValue TNumber;
typedef TValue Action;
typedef TValue ImageLiteral;
// To be implemented by the target
extern "C" void target_panic(int error_code);
extern "C" void target_reset();
void sleep_ms(unsigned ms);
void sleep_us(uint64_t us);
void releaseFiber();
int current_time_ms();
void initRuntime();
void sendSerial(const char *data, int len);
int getSerialNumber();
void registerWithDal(int id, int event, Action a, int flags = 16); // EVENT_LISTENER_DEFAULT_FLAGS
void runInParallel(Action a);
void runForever(Action a);
void waitForEvent(int id, int event);
//%
unsigned afterProgramPage();
//%
void dumpDmesg();
// also defined DMESG macro
// end
#define TAGGED_SPECIAL(n) (TValue)(void *)((n << 2) | 2)
#define TAG_FALSE TAGGED_SPECIAL(2)
#define TAG_TRUE TAGGED_SPECIAL(16)
#define TAG_UNDEFINED (TValue)0
#define TAG_NULL TAGGED_SPECIAL(1)
#define TAG_NUMBER(n) (TNumber)(void *)((n << 1) | 1)
inline bool isTagged(TValue v) {
return ((intptr_t)v & 3) || !v;
}
inline bool isNumber(TValue v) {
return (intptr_t)v & 1;
}
inline bool isSpecial(TValue v) {
return (intptr_t)v & 2;
}
inline bool bothNumbers(TValue a, TValue b) {
return (intptr_t)a & (intptr_t)b & 1;
}
inline int numValue(TValue n) {
return (intptr_t)n >> 1;
}
#ifdef PXT_BOX_DEBUG
inline bool canBeTagged(int) {
return false;
}
#else
inline bool canBeTagged(int v) {
return (v << 1) >> 1 == v;
}
#endif
typedef enum {
ERR_INVALID_BINARY_HEADER = 5,
ERR_OUT_OF_BOUNDS = 8,
ERR_REF_DELETED = 7,
ERR_SIZE = 9,
} PXT_ERROR;
extern const unsigned functionsAndBytecode[];
extern TValue *globals;
extern uint16_t *bytecode;
class RefRecord;
// Utility functions
//%
TValue runAction3(Action a, TValue arg0, TValue arg1, TValue arg2);
//%
TValue runAction2(Action a, TValue arg0, TValue arg1);
//%
TValue runAction1(Action a, TValue arg0);
//%
TValue runAction0(Action a);
//%
Action mkAction(int reflen, int totallen, int startptr);
// allocate [sz] words and clear them
//%
unsigned *allocate(ramint_t sz);
//%
int templateHash();
//%
int programHash();
//%
unsigned programSize();
//%
int getNumGlobals();
//%
RefRecord *mkClassInstance(int vtableOffset);
//%
void debugMemLeaks();
//%
void anyPrint(TValue v);
int getConfig(int key, int defl = -1);
//%
int toInt(TNumber v);
//%
unsigned toUInt(TNumber v);
//%
double toDouble(TNumber v);
//%
float toFloat(TNumber v);
//%
TNumber fromDouble(double r);
//%
TNumber fromFloat(float r);
//%
TNumber fromInt(int v);
//%
TNumber fromUInt(unsigned v);
//%
TValue fromBool(bool v);
//%
bool eq_bool(TValue a, TValue b);
//%
bool eqq_bool(TValue a, TValue b);
void error(PXT_ERROR code, int subcode = 0);
void exec_binary(unsigned *pc);
void start();
struct HandlerBinding {
HandlerBinding *next;
int source;
int value;
Action action;
};
HandlerBinding *findBinding(int source, int value);
void setBinding(int source, int value, Action act);
// The standard calling convention is:
// - when a pointer is loaded from a local/global/field etc, and incr()ed
// (in other words, its presence on stack counts as a reference)
// - after a function call, all pointers are popped off the stack and decr()ed
// This does not apply to the RefRecord and st/ld(ref) methods - they unref()
// the RefRecord* this.
//%
TValue incr(TValue e);
//%
void decr(TValue e);
class RefObject;
static inline RefObject *incrRC(RefObject *r) {
return (RefObject *)incr((TValue)r);
}
static inline void decrRC(RefObject *r) {
decr((TValue)r);
}
inline void *ptrOfLiteral(int offset) {
return &bytecode[offset];
}
// Checks if object is ref-counted, and has a custom PXT vtable in front
// TODO
inline bool isRefCounted(TValue e) {
return !isTagged(e) && (*((unsigned *)e) & 1) == 1;
}
inline void check(int cond, PXT_ERROR code, int subcode = 0) {
if (!cond)
error(code, subcode);
}
inline void oops() {
target_panic(47);
}
class RefObject;
#ifdef PXT_MEMLEAK_DEBUG
extern std::set<TValue> allptrs;
#endif
typedef void (*RefObjectMethod)(RefObject *self);
typedef void *PVoid;
typedef void **PPVoid;
typedef void *Object_;
const PPVoid RefMapMarker = (PPVoid)(void *)43;
struct VTable {
uint16_t numbytes; // in the entire object, including the vtable pointer
uint16_t userdata;
PVoid *ifaceTable;
PVoid methods[2]; // we only use up to two methods here; pxt will generate more
// refmask sits at &methods[nummethods]
};
const int vtableShift = PXT_VTABLE_SHIFT;
// A base abstract class for ref-counted objects.
class RefObject {
public:
uint16_t refcnt;
uint16_t vtable;
RefObject(uint16_t vt) {
refcnt = 3;
vtable = vt;
#ifdef PXT_MEMLEAK_DEBUG
allptrs.insert((TValue)this);
#endif
}
void destroyVT();
void printVT();
// Call to disable pointer tracking on the current instance (in destructor or some other hack)
inline void untrack() {
#ifdef PXT_MEMLEAK_DEBUG
allptrs.erase((TValue)this);
#endif
}
inline bool isReadOnly() { return refcnt == 0xffff; }
// Increment/decrement the ref-count. Decrementing to zero deletes the current object.
inline void ref() {
if (isReadOnly())
return;
check(refcnt > 1, ERR_REF_DELETED);
// DMESG("INCR "); this->print();
refcnt += 2;
}
inline void unref() {
if (isReadOnly())
return;
check(refcnt > 1, ERR_REF_DELETED);
check((refcnt & 1), ERR_REF_DELETED);
// DMESG("DECR "); this->print();
refcnt -= 2;
if (refcnt == 1) {
untrack();
destroyVT();
}
}
};
class Segment {
private:
TValue *data;
ramint_t length;
ramint_t size;
// this just gives max value of ramint_t
static constexpr ramint_t MaxSize = (((1U << (8 * sizeof(ramint_t) - 1)) - 1) << 1) + 1;
static constexpr TValue DefaultValue = TAG_UNDEFINED;
static ramint_t growthFactor(ramint_t size);
void growByMin(ramint_t minSize);
void growBy(ramint_t newSize);
void ensure(ramint_t newSize);
public:
Segment() : data(nullptr), length(0), size(0){};
TValue get(unsigned i);
void set(unsigned i, TValue value);
void setRef(unsigned i, TValue value);
unsigned getLength() { return length; };
void setLength(unsigned newLength);
void resize(unsigned newLength) { setLength(newLength); }
void push(TValue value);
TValue pop();
TValue remove(unsigned i);
void insert(unsigned i, TValue value);
bool isValidIndex(unsigned i);
void destroy();
void print();
};
// A ref-counted collection of either primitive or ref-counted objects (String, Image,
// user-defined record, another collection)
class RefCollection : public RefObject {
private:
Segment head;
public:
RefCollection();
static void destroy(RefCollection *coll);
static void print(RefCollection *coll);
unsigned length() { return head.getLength(); }
void setLength(unsigned newLength) { head.setLength(newLength); }
void push(TValue x);
TValue pop();
TValue getAt(int i);
void setAt(int i, TValue x);
// removes the element at index i and shifts the other elements left
TValue removeAt(int i);
// inserts the element at index i and moves the other elements right.
void insertAt(int i, TValue x);
int indexOf(TValue x, int start);
bool removeElement(TValue x);
};
class RefMap : public RefObject {
public:
Segment keys;
Segment values;
RefMap();
static void destroy(RefMap *map);
static void print(RefMap *map);
int findIdx(unsigned key);
};
// A ref-counted, user-defined JS object.
class RefRecord : public RefObject {
public:
// The object is allocated, so that there is space at the end for the fields.
TValue fields[];
RefRecord(uint16_t v) : RefObject(v) {}
TValue ld(int idx);
TValue ldref(int idx);
void st(int idx, TValue v);
void stref(int idx, TValue v);
};
//%
VTable *getVTable(RefObject *r);
// these are needed when constructing vtables for user-defined classes
//%
void RefRecord_destroy(RefRecord *r);
//%
void RefRecord_print(RefRecord *r);
class RefAction;
typedef TValue (*ActionCB)(TValue *captured, TValue arg0, TValue arg1, TValue arg2);
// Ref-counted function pointer.
class RefAction : public RefObject {
public:
// This is the same as for RefRecord.
uint8_t len;
uint8_t reflen;
ActionCB func; // The function pointer
// fields[] contain captured locals
TValue fields[];
static void destroy(RefAction *act);
static void print(RefAction *act);
RefAction();
inline void stCore(int idx, TValue v) {
// DMESG("ST [%d] = %d ", idx, v); this->print();
intcheck(0 <= idx && idx < len, ERR_OUT_OF_BOUNDS, 10);
intcheck(fields[idx] == 0, ERR_OUT_OF_BOUNDS, 11); // only one assignment permitted
fields[idx] = v;
}
inline TValue runCore(TValue arg0, TValue arg1,
TValue arg2) // internal; use runAction*() functions
{
this->ref();
TValue r = this->func(&this->fields[0], arg0, arg1, arg2);
this->unref();
return r;
}
};
// These two are used to represent locals written from inside inline functions
class RefLocal : public RefObject {
public:
TValue v;
static void destroy(RefLocal *l);
static void print(RefLocal *l);
RefLocal();
};
class RefRefLocal : public RefObject {
public:
TValue v;
static void destroy(RefRefLocal *l);
static void print(RefRefLocal *l);
RefRefLocal();
};
typedef int color;
// note: this is hardcoded in PXT (hexfile.ts)
#define PXT_REF_TAG_STRING 1
#define PXT_REF_TAG_BUFFER 2
#define PXT_REF_TAG_IMAGE 3
#define PXT_REF_TAG_NUMBER 32
#define PXT_REF_TAG_ACTION 33
class BoxedNumber : public RefObject {
public:
double num;
BoxedNumber() : RefObject(PXT_REF_TAG_NUMBER) {}
} __attribute__((packed));
class BoxedString : public RefObject {
public:
uint16_t length;
char data[0];
BoxedString() : RefObject(PXT_REF_TAG_STRING) {}
};
class BoxedBuffer : public RefObject {
public:
// data needs to be word-aligned, so we use 32 bits for length
int length;
uint8_t data[0];
BoxedBuffer() : RefObject(PXT_REF_TAG_BUFFER) {}
};
// the first byte of data indicates the format - currently 0xE1 or 0xE4 to 1 or 4 bit bitmaps
// second byte indicates width in pixels
// third byte indicates the height (which should also match the size of the buffer)
// just like ordinary buffers, these can be layed out in flash
class RefImage : public RefObject {
uintptr_t _buffer;
uint8_t _data[0];
public:
RefImage(BoxedBuffer *buf);
RefImage(uint32_t sz);
bool hasBuffer() { return !(_buffer & 1); }
BoxedBuffer *buffer() { return hasBuffer() ? (BoxedBuffer *)_buffer : NULL; }
void setBuffer(BoxedBuffer *b);
bool isDirty() { return (_buffer & 3) == 3; }
void clearDirty() { if (isDirty()) _buffer &= ~2; }
uint8_t *data() { return hasBuffer() ? buffer()->data : _data; }
int length() { return hasBuffer() ? buffer()->length : (_buffer >> 2); }
int pixLength() { return length() - 4; }
int height();
int width();
int byteHeight();
int wordHeight();
int bpp();
bool hasPadding() { return (height() & 0x1f) != 0; }
uint8_t *pix() { return data() + 4; }
uint8_t *pix(int x, int y);
uint8_t fillMask(color c);
bool inRange(int x, int y);
void clamp(int *x, int *y);
void makeWritable();
static void destroy(RefImage *t);
static void print(RefImage *t);
};
RefImage *mkImage(int w, int h, int bpp);
typedef BoxedBuffer *Buffer;
typedef BoxedString *String;
typedef RefImage *Image_;
// keep in sync with github/pxt/pxtsim/libgeneric.ts
enum class NumberFormat {
Int8LE = 1,
UInt8LE,
Int16LE,
UInt16LE,
Int32LE,
Int8BE,
UInt8BE,
Int16BE,
UInt16BE,
Int32BE,
UInt32LE,
UInt32BE,
Float32LE,
Float64LE,
Float32BE,
Float64BE,
};
// data can be NULL in both cases
String mkString(const char *data, int len = -1);
Buffer mkBuffer(const uint8_t *data, int len);
TNumber getNumberCore(uint8_t *buf, int size, NumberFormat format);
void setNumberCore(uint8_t *buf, int size, NumberFormat format, TNumber value);
TNumber mkNaN();
void seedRandom(unsigned seed);
// max is inclusive
unsigned getRandom(unsigned max);
extern const VTable string_vt;
extern const VTable image_vt;
extern const VTable buffer_vt;
extern const VTable number_vt;
extern const VTable RefAction_vtable;
enum class ValType {
Undefined,
Boolean,
Number,
String,
Object,
Function,
};
ValType valType(TValue v);
} // namespace pxt
#define PXT_DEF_STRING(name, val) \
static const char name[] __attribute__((aligned(4))) = "\xff\xff\x01\x00" val;
using namespace pxt;
namespace pins {
Buffer createBuffer(int size);
}
namespace String_ {
int compare(String s, String that);
}
// The ARM Thumb generator in the JavaScript code is parsing
// the hex file and looks for the magic numbers as present here.
//
// Then it fetches function pointer addresses from there.
//
// The vtable pointers are there, so that the ::emptyData for various types
// can be patched with the right vtable.
//
#define PXT_SHIMS_BEGIN \
namespace pxt { \
const unsigned functionsAndBytecode[] \
__attribute__((aligned(0x20))) = {0x08010801, 0x42424242, 0x08010801, 0x8de9d83e,
#define PXT_SHIMS_END \
} \
; \
}
#ifndef X86_64
#pragma GCC diagnostic ignored "-Wpmf-conversions"
#endif
#define PXT_VTABLE_TO_INT(vt) ((uintptr_t)(vt) >> vtableShift)
#define PXT_VTABLE_BEGIN(classname, flags, iface) \
const VTable classname##_vtable __attribute__((aligned(1 << vtableShift))) = { \
sizeof(classname), flags, iface, {(void *)&classname::destroy, (void *)&classname::print,
#define PXT_VTABLE_END \
} \
} \
;
#define PXT_VTABLE_INIT(classname) RefObject(PXT_VTABLE_TO_INT(&classname##_vtable))
#define PXT_VTABLE_CTOR(classname) \
PXT_VTABLE_BEGIN(classname, 0, 0) \
PXT_VTABLE_END classname::classname() : PXT_VTABLE_INIT(classname)
#define PXT_MAIN \
int main() { \
pxt::start(); \
return 0; \
}
#define PXT_FNPTR(x) (unsigned)(void *)(x)
#define PXT_ABI(...)
#define JOIN(a, b) a##b
/// Defines getClassName() function to fetch the singleton
#define SINGLETON(ClassName) \
static ClassName *JOIN(inst, ClassName); \
ClassName *JOIN(get, ClassName)() { \
if (!JOIN(inst, ClassName)) \
JOIN(inst, ClassName) = new ClassName(); \
return JOIN(inst, ClassName); \
}
#endif

View File

@ -41,6 +41,7 @@
"@types/node": "8.0.53"
},
"dependencies": {
"pxt-common-packages": "0.23.53",
"pxt-core": "3.22.17"
}
}