New guitar project (#264)

This commit is contained in:
Peli de Halleux 2016-09-26 21:55:39 -07:00 committed by GitHub
parent c486a9db94
commit 2c39e249f9
19 changed files with 632 additions and 0 deletions

36
docs/projects/guitar.md Normal file
View File

@ -0,0 +1,36 @@
# Guitar
![guitar icon](/static/mb/projects/guitar.png)
### @description A beginner-intermediate maker activity, building a guitar with the micro:bit
### ~avatar avatar
Make a micro:bit guitar with this guided tutorial!
### ~
*playing micro:bit guitar*
https://youtu.be/GYmdTFvxz80
## Duration
5 Activities, approx 30-45 min each based on familiarity with the coding concepts
## Materials
* Cardboard large pieces (recycle!)
* Tape (masking, duct Tape, and/or packing tape)
* Markers and/or paint
* Aluminum Foil
* Scissors that can cut cardboard
* 1 micro:bit, battery holder and 2 AAA batteries
* 4-5 Crocodile clips
* Headphones
## Activities
* [Making the Guitar Body](/projects/guitar/making)
* [Buttons, Display & Sound](/projects/guitar/displaybuttons)
* [Light Sensor Tone control](/projects/guitar/lightsensor)
* [Accelerometer Beat control](/projects/guitar/accelerometer)
* [Pin Press Switch](/projects/guitar/pinpress)
### ~button /projects/guitar/making
Let's get started!
### ~

View File

@ -0,0 +1,114 @@
# Accelerometer Beat control
### @description micro:bit guitar: using accelerometer to control tempo
### ~avatar avatar
Use the Accelerometer to control guitar tempo
* Duration: 30 - 45 minutes
* Concepts:
* Gravity
* Acceleration
* X, Y, Z coordinates
* Tempo
* Beat
* Mapping
* Graphing
* Absolute value
### ~
*accelerometer controlled tempo*
https://youtu.be/h_gPkBaVkoo
TODO: add sound to video
## Blocks
```cards
input.acceleration(Dimension.Y)
music.setTempo(120)
pins.map(0, 0, 1023,60, 320)
Math.abs(1)
```
## Accelerometer, gravity and tilting!
The micro:bit contains an **accelerometer** sensor that is able to measure forces applied to the board.
On earth, we are subject to the **gravity force** which pulls us to the ground!
https://youtu.be/0SULoTKmkhI
When the micro:bit is flat on a table, with the screen pointing up, the gravity force is aligned
with the **Z** axis of the micro:bit.
![micro:bit x, y, z axis image](/static/mb/projects/guitar/accelleration_axis.png)
If you tilt it up and down, the force will align with the **Y** axis -- this is how we can detect tilting!!!
If the force along **Y** grows, the micro:bit is tilting more and more vertically!
## Measuring Acceleration along different coordinates (X, Y, Z axis)
The acceleration block approximately measures **milli-g**, which is 1/1000 of a **g** or the
acceleration of gravity.
### Step 1: Graphing acceleration
```blocks
basic.forever(() => {
led.plotBarGraph(input.acceleration(Dimension.Y), 1023)
})
```
**Create the code** that measures the change in the Y axis acceleration as a graph on the LEDs
**Dowload the code** to the micro:bit
**Test the movements that move the graph from 1 to 5 bars on the LEDs**
### Extra
Try graphing the acceleration along the **X** and **Z** axis. Can you explain the differences?
### ~hint
## Mapping
**It is common to map one standard to another - such as with temperature**
![Fahrenheit to Celsius](/static/mb/projects/guitar/map_analogy.png "Fahrenheit to Celsius")
### ~
### Step 2: Mapping acceleration to Beat
**micro:bit sensors produce signal values between 0 to 1023. The *[map block](/reference/pins/map)* converts the signal to a desired range.**
```blocks
basic.forever(() => {
music.setTempo(pins.map(Math.abs(input.acceleration(Dimension.Y)),
0, 1023,
60, 320))
music.playTone(Note.C, music.beat(BeatFraction.Quarter));
})
```
**Create the code** that *Maps* Y axis acceleration as *tempo*
**Download the code** to the micro:bit on the guitar
**Test the movements that speed and slow the tempo**
### Step 3: Combine with light sensor tone control
**Put it all together!**
```blocks
basic.forever(() => {
music.setTempo(pins.map(Math.abs(input.acceleration(Dimension.Y)),
0, 1023,
60, 320))
music.playTone(
input.lightLevel() * 25,
music.beat(BeatFraction.Quarter)
);
})
```
**Combine the code above with the light sensor tone control code from the previous activity**
**Download the code** to the micro:bit on the guitar
### Now play the guitar adjusting tone and tempo using the light sensor and accelerometer!
### ~button /projects/guitar/pinpress
NEXT: Pin Press on/off
### ~

View File

@ -0,0 +1,179 @@
# Buttons, Display & Sound
### @description micro:bit guitar: using buttons with display and sound
### ~avatar avatar
Use Button Events to control LED Display and play Sound
* **Concepts:**
* Events
* Tone/Note
* Sequence
### ~
## Duration: 30 - 45 minutes
## Materials
A micro:bit, battery pack and 2 x AAA batteries
![battery pack and micro:bit](/static/mb/projects/guitar/microbit.jpg)
2 to 4 crocodile clips
![crocodile clips](/static/mb/projects/guitar/crocclips.jpg)
Headphones
![earbud headphones](/static/mb/projects/guitar/headphones.jpg)
## Blocks
```cards
basic.showLeds(`
. # . # .
. . . . .
. # # # .
. # . # .
. # # # .
`);
input.onButtonPressed(Button.A, () => {});
music.playTone(Note.C, music.beat(BeatFraction.Quarter))
music.rest(music.beat(BeatFraction.Whole))
music.beat(BeatFraction.Quarter)
```
## Step 1: Make a Smiley
Open [codethemicrobit.com](https://codethemicrobit.com) in your web browser
```blocks
basic.showLeds(`
. # . # .
. . . . .
. # # # .
. # . # .
. # # # .
`);
```
From **Basics**, drag a **show LEDs** block into the coding area
* Create a face with LEDs
![micro:bit USB connection](/static/mb/projects/guitar/connectmicrobit.jpg)
Connect your micro:bit to your computer via USB and click **`Download`**.
Follow the instructions to move the code to your micro:bit.
## Step 2: Add Smiley LED Button Events
```blocks
input.onButtonPressed(Button.A, () => {
basic.showLeds(`
. # . # .
. . . . .
. # # # .
. # . # .
. # # # .
`)
})
input.onButtonPressed(Button.B, () => {
basic.showLeds(`
. # . # .
. . . . .
. . . . .
# . . . #
. # # # .
`)
})
```
From **Input**, drag an **on button 'A' pressed** block into the coding area
* Snap the LED face into the block
* Create a 'B' button block with a different LED face
* Download the code to your micro:bit and try the A & B buttons
## Step 3: Add Headphone Speakers using Crocodile clips
![crocodile clips attached to pins 0 and GND](/static/mb/projects/guitar/crocclipintoboard.jpg)
![crocodile clips attached to headphone jack](/static/mb/projects/guitar/jacktocrocs.jpg)
Connect **GND** to the **base of the headphone jack** using a second crocodile clip (usually black)
Connect **pin 0** to the **tip of the headphone jack** with a crocodile clip
*attaching batteries and micro:bit*
https://youtu.be/zwRTmpKIaVU
Attach the micro:bit & battery-pack to the guitar body
*connecting headphone speaker*
https://youtu.be/ewyEW_U5G9M
Connect the headphones with crocodile clips
### ~hint
## The micro:bit can play music
The **play tone** block allows a range letter note tones from **C** to **B5**.
Songs are played using sequences notes. Like the beginning of a birthday song (C, C, D, C, F, E).
```blocks
input.onButtonPressed(Button.A, () => {
music.playTone(Note.C, music.beat(BeatFraction.Quarter))
music.rest(music.beat(BeatFraction.Whole))
music.playTone(Note.C, music.beat(BeatFraction.Quarter))
music.rest(music.beat(BeatFraction.Whole))
music.playTone(Note.D, music.beat(BeatFraction.Quarter))
music.rest(music.beat(BeatFraction.Whole))
music.playTone(Note.C, music.beat(BeatFraction.Quarter))
music.rest(music.beat(BeatFraction.Whole))
music.rest(music.beat(BeatFraction.Whole))
music.playTone(Note.F, music.beat(BeatFraction.Half))
music.rest(music.beat(BeatFraction.Whole))
music.playTone(Note.E, music.beat(BeatFraction.Whole))
})
```
### ~
## Step 4: Add Tone Playing Events for Buttons A & B
```blocks
input.onButtonPressed(Button.A, () => {
basic.showLeds(`
. # . # .
. . . . .
. # # # .
. # . # .
. # # # .
`)
music.playTone(Note.A, music.beat(BeatFraction.Whole))
})
input.onButtonPressed(Button.B, () => {
basic.showLeds(`
. # . # .
. . . . .
. . . . .
# . . . #
. # # # .
`)
music.playTone(Note.G, music.beat(BeatFraction.Whole))
})
```
From **Music**, drag **play tone *C* for *1* beat** block under the **show leds** in **Button A Pressed**
* modify **tone** by choosing a note (*letter*) and experiment with high and low pitches
* set **beat** to 1
**Repeat** for **Button B** event
**Download the code** to the micro:bit
**Try the A & B buttons** with headphones and power connected
## Congratulations on completing the basic guitar!
**Challenge:** Create Samples of longer music to play for each button instead of the single tone
* *Tip*: Search for "ABC music notation" or "Easy Music Notes" + the name of a song
## Extra
* [Smiley Buttons tutorial](/projects/smiley-buttons)
* [Hack your headphones](/projects/hack-your-headphones)
### ~button /projects/guitar/lightsensor
NEXT: Light Sensor Tone Control
### ~

View File

@ -0,0 +1,116 @@
# Light Sensor Tone control
### @description micro:bit guitar: using light sensor to control tone
### ~avatar avatar
Use the Light Sensor to control guitar Tone
* **Duration:** 30 - 45 minutes
* **Concepts:**
* Inputs
* Light Intensity
* Tone/Frequency
* Ratio Mapping
* Forever Loop
* Math (multiplication) with code properties
* **Resources:**
* This guitar is inspired by the [Theremin](https://en.wikipedia.org/wiki/Theremin)
### ~
*playing tones with light sensor*
https://youtu.be/2cKg9pokVC4
## The micro:bit LEDs Light Sensors
- the micro:bit can detect external light level intensity reaching the LEDs
- the light level block reports a reading of values 0 (*dark*) to 255 (*bright*)
- a **Forever Loop** is required to continually use measure the current light level to control the tone
## Forever Loop
The forever loop really does run forever. The forever loop is useful when there is a need to continually check for an event or use a changing value in code.
## Blocks
```cards
basic.forever(() => {})
input.lightLevel()
led.plotBarGraph(0, 255)
music.playTone(Note.C, music.beat(BeatFraction.Quarter))
```
## Step 1: Create a light level detector
```blocks
basic.forever(() => {
led.plotBarGraph(input.lightLevel(), 255)
})
```
**Build the blocks**
* From **Basic** drag a **forever loop** block into the coding area
* From **Led** drag a **plot bar graph** block into the **forever loop**
* From **Input** drag a **light level** block into **plot bar graph *of***
**Set the *plot bar graph* value *up to* = *255* **
## Step 2: Test the light required to move the bar graph height
*graphing light input*
https://youtu.be/pqU7bTcfQ_s
Experiment to see the effect on graph height when the **plot bar graph** value ***up to*** is changed
**255 is the maximum light input reading**, try numbers smaller than 255
**Find a value** that allows the graph to show 1 - 5 bars
### ~hint
### Frequency
**Frequency** measured in Hz which are cycles per second or vibrations per second
* A healthy human ear can detect frequencies in the range of 20Hz to 20,000Hz.
* The micro:bit + headphones reliably produce detectable output ~50Hz - 6,000Hz.
**261Hz** represents a C note
```blocks
music.playTone(261, music.beat(BeatFraction.Half))
```
**play tone** blocks can specify a specific numeric **Frequency**
by replacing the letter note 261Hz represents a **C** note with a **number** block
```blocks
music.playTone(261, music.beat(BeatFraction.Half))
```
### ~
## Step 3: Multiply Frequency using Math blocks
```blocks
input.onButtonPressed(Button.A, () => {
music.playTone(261 * 2, music.beat(BeatFraction.Half))
})
```
create a **play tone** block using a **Math** section, **multiplication** block to set *tone*
### Next
**Add** a **B** button block that multiplies the **261** tone by a number other than 2 to set tone
**Download the code to the micro:bit**
**Test the sound for multiples of the 261Hz *C* frequency**
## Step 4: Control the Frequency with the light input
```blocks
basic.forever(() => {
music.playTone(input.lightLevel() * 25, music.beat(BeatFraction.Quarter))
})
```
**Create a *forever loop* containing a *play tone* block**
**Set *tone*, using *Math* multiplication block that multiplies *light level* input by 25**
or experiment with multipliers larger and smaller than 25
**Test light tone control on the guitar**
Cover the LEDs with your hand to vary light detected to control the tone
## Good work, this guitar is sounding good!
**Challenge:** Create a variable for the light level multiplier that you can change using buttons (optional)
### ~button /projects/guitar/accelerometer
NEXT: Accelerometer Beat control
### ~

View File

@ -0,0 +1,59 @@
# Making the Guitar Body
### @description Maker Project for Guitar Body for micro:bit
### ~avatar avatar
Make the Guitar Body for your micro:bit Guitar
### ~
## Duration: ~45 minutes
## Materials
* Cardboard large pieces (recycle!)
* Tape (masking, duct Tape, and/or packing tape)
* Scissors that can cut cardboard
* Markers and/or paint
![Materials: cardboard, tape, scissors, markers](/static/mb/projects/guitar/materials.jpg)
## Step 1: Design the body
*tracing the guitar design*
https://youtu.be/xMSrWaOZkFg
* Search for [Guitar Silhouette](https://www.bing.com/images/search?q=Guitar+Silhouettes) design ideas and customize
the shape of your guitar
* Trace the design on a flat piece of cardboard (40-80 cm is best)
### ~hint
* Avoid small details that are difficult to cut into cardboard
* Unfolding a box gives longer pieces of cardboard, and creases can be reinforced
### ~
## Step 2: Cut out the body
*cutting the cardboard*
https://youtu.be/aUQkrFoEank
## Step 3: Personalize the Guitar
Create unique styling using tape, markers, paint and other available materials (*calling all artist!*)
*decorating the guitar*
https://youtu.be/zNAZTJeSxY8
Everyone can come up with a unique design!
![guitar design samples](/static/mb/projects/guitar/otherdesigns.jpg)
## Extra!
*strengthening the guitar*
https://youtu.be/q0GkQdJmxjE
Strengthen the guitar next with an angled cardboard strip (*optional*).
### ~button /projects/guitar/displaybuttons
NEXT: Buttons, Display and Sound
### ~

View File

@ -0,0 +1,128 @@
# Pin Press Switch
### @description micro:bit guitar: use pin press to toggle guitar play on/off
### ~avatar avatar
Use pin press to switch guitar play on/off
* **Duration:** approximately 45 minutes
* **Materials:**
* 2-3 Crocodile clips
* Concepts:
* Circuit
* Conductor
* Variable/Global-Variable
* Conditional: **`if`**, **`else`**
* Boolean: **`True`/`False`**
### ~
## Blocks
```cards
var on = false
on;
if (on) { } else {}
input.onPinPressed(TouchPin.P1, () => {})
```
### ~hint
## Circuits & Switches
* **Circuits** need a power supply (battery), a resister (like a LED) & a conductor (metal, water, hand)
* **Switches** turn electric power on by closing (completing) a circuit with a conductor so power can flow
**Metal foil and wires make excellent conductors**
**In this activity we use YOU to conduct electricity**
**to close the circuit that switches the guitar ON and OFF!**
### ~
## Step 1: Pin Press Test
```blocks
input.onPinPressed(TouchPin.P0, () => {
basic.showNumber(0)
})
input.onPinPressed(TouchPin.P1, () => {
basic.showNumber(1)
})
input.onPinPressed(TouchPin.P2, () => {
basic.showNumber(2)
})
```
**Create the pin-press code**
**Download the code** on the micro:bit
https://youtu.be/PAIU-vHqyGU
**Hold the micro:bit touching The GND pin with one hand**
**with the other hand alternately touch the 0, 1 and 2 pins**
### ~hint
**The electric signal traveled from pins, between your hands to `GND` and the micro:bit detected the electric signal!**
### ~
## Step 2: Installing conductive foil on the guitar
https://youtu.be/NX0ECcpXFes
**Add foil to the guitar body where it is easy to touch while playing**
**Connect the foil to `GND` using a crocodile clip**
https://youtu.be/YkymZGNmkrE
**Add foil to the guitar neck**
**Connect the foil to `pin 1` using a crocodile clip**
## Step 3: Add a switch to turn the guitar ON and OFF
**Using the `on` global variable we can switch the message on the micro:bit**
**between ON and OFF**
```blocks
let on = false
basic.forever(() => {
if (on == true) {
basic.showString("ON")
} else {
basic.showString("OFF")
}
})
input.onPinPressed(TouchPin.P1, () => {
if (on == true) {
on = false
} else {
on = true
}
})
```
**Create the ON/OFF switch code**
**Download the code on the micro:bit**
**Test by touching `P1` to toggle the LED message between ON and OFF**
*Final code*
TODO: do we want to use `on = !on;` or be more direct in flipping the switch? `on = true; on = false;`
```blocks
var on = false
basic.forever(() => {
if (on) {
music.setTempo(pins.map(Math.abs(input.acceleration(Dimension.Y)),
0, 1023,
60, 320))
music.playTone(
input.lightLevel() * 25,
music.beat(BeatFraction.Quarter)
);
} else {
music.rest(music.beat())
}
})
input.onPinPressed(TouchPin.P1, () => {
on = !on;
})
```
## Now Play!
**Turn the guitar ON and OFF with a pin press on the connected foil**
**touching both pieces of foil at the same time to connect the switches**
https://youtu.be/GYmdTFvxz80

BIN
docs/static/mb/projects/guitar.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 46 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 67 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 66 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 59 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 71 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 86 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 94 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 102 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 92 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 51 KiB