rename micro:bit to @boardname@

This commit is contained in:
Peli de Halleux
2016-11-01 17:44:37 -07:00
parent 9bc1e38345
commit 89406330cf
226 changed files with 697 additions and 750 deletions

View File

@ -1,10 +1,10 @@
# Activity
Measure the acceleration on the micro:bit in the "x" direction.
Measure the acceleration on the @boardname@ in the "x" direction.
### ~avatar avatar
Welcome! This activity will teach how to use the micro:bit to chart the acceleration in the "x" direction. Let's get started!
Welcome! This activity will teach how to use the @boardname@ to chart the acceleration in the "x" direction. Let's get started!
### ~
@ -16,7 +16,7 @@ input.acceleration(Dimension.X)
```
### ~
Use the plot bar chart to visualize the acceleration on the LED screen of the micro:bit in the specified range. You implement plot Bar Graph to display a vertical bar graph based on the "value" and "high" value. Then you must insert acceleration in the X dimension to measure the acceleration.
Use the plot bar chart to visualize the acceleration on the LED screen of the @boardname@ in the specified range. You implement plot Bar Graph to display a vertical bar graph based on the "value" and "high" value. Then you must insert acceleration in the X dimension to measure the acceleration.
```blocks
basic.forever(() => {
@ -26,27 +26,27 @@ basic.forever(() => {
```
### ~
Notice that moving the micro:bit in the simulator from left to right (x direction) changes the values beneath the micro:bit in a range from 1023 to -1023 as measured in milli-gravities. By hovering over the micro:bit from left to right, you can observe changing values beneath the micro:bit simulator. Also, the LEDs shown on the Bar Graph fluctates based on the movement of the micro:bit simulator in the x direction. The line underneath the micro:bit simulator reflect the acceleration in the x direction.
Notice that moving the @boardname@ in the simulator from left to right (x direction) changes the values beneath the @boardname@ in a range from 1023 to -1023 as measured in milli-gravities. By hovering over the @boardname@ from left to right, you can observe changing values beneath the @boardname@ simulator. Also, the LEDs shown on the Bar Graph fluctates based on the movement of the @boardname@ simulator in the x direction. The line underneath the @boardname@ simulator reflect the acceleration in the x direction.
NOTE: The colors of the charts reflect the color of the micro:bit simulator. In this instance, the micro:bit is yellow. So the color of the data line reflects the color of the micro:bit
NOTE: The colors of the charts reflect the color of the @boardname@ simulator. In this instance, the @boardname@ is yellow. So the color of the data line reflects the color of the @boardname@
![](/static/mb/data4.png)
### ~
Vigorously move the micro:bit in the micro:bit simulatator by moving the micro:bit image from side to side. Every time the micro:bit moves in the x direction in the simulator, you are generating data points that can be reviewed in Excel. The more attempts to move the micro:bit from side to side, the more data being saved in Excel. After you have vigarously moved the micro:bit simulator from side to side for a sufficient amount of time, you are ready to graph or chart the accceleration of the micro:bit. We want a printout of our acceleration on Excel that can be graphed in Excel.
Vigorously move the @boardname@ in the @boardname@ simulatator by moving the @boardname@ image from side to side. Every time the @boardname@ moves in the x direction in the simulator, you are generating data points that can be reviewed in Excel. The more attempts to move the @boardname@ from side to side, the more data being saved in Excel. After you have vigarously moved the @boardname@ simulator from side to side for a sufficient amount of time, you are ready to graph or chart the accceleration of the @boardname@. We want a printout of our acceleration on Excel that can be graphed in Excel.
### ~
We want to chart the data collected by using a tool in Excel.
The final part of this experiment is opening and reviewing the data in the Excel CSV file. Simply click on the line beneath the simulator. A CSV file will be generated to display the data points collected by moving the micro:bit in the X direction. Then click or tap on the data Excel file that was downloaded to your local ``Downloads`` Folder.
The final part of this experiment is opening and reviewing the data in the Excel CSV file. Simply click on the line beneath the simulator. A CSV file will be generated to display the data points collected by moving the @boardname@ in the X direction. Then click or tap on the data Excel file that was downloaded to your local ``Downloads`` Folder.
### ~
First, click or tap on the first two columns (A, B) to include the time of the data being collected; b) the results of acceleration data on the micro:bit
First, click or tap on the first two columns (A, B) to include the time of the data being collected; b) the results of acceleration data on the @boardname@
![](/static/mb/data7.png)

View File

@ -2,11 +2,11 @@
### ~avatar avatar
Welcome! The activity will teach you how to use the acceleration of the 1st micro:bit and to visualize the acceleration on the 2nd micro:bit.
Welcome! The activity will teach you how to use the acceleration of the 1st @boardname@ and to visualize the acceleration on the 2nd @boardname@.
Let's get started!
### ~
Let's measure `acceleration (mg)` and then `send number`. `Acceleration` is measured in **milli-gravities**, so a value of -1000 is equivalent to -1g or -9.81m/s^2. We will be able to get the acceleration value (g-force), in the specified "x" dimension. `Send number` will broadcast a number data packet to other micro:bits connected via radio.
Let's measure `acceleration (mg)` and then `send number`. `Acceleration` is measured in **milli-gravities**, so a value of -1000 is equivalent to -1g or -9.81m/s^2. We will be able to get the acceleration value (g-force), in the specified "x" dimension. `Send number` will broadcast a number data packet to other @boardname@s connected via radio.
```blocks
radio.sendNumber(input.acceleration(Dimension.X));
@ -33,7 +33,7 @@ radio.onDataPacketReceived(() => {
})
```
### ~
Finally, we want to chart the acceleration. So we must first implement `plot bar graph`. `Plot Bar Graph` will display a vertical bar graph based on the value and high value. In order to transfer the receive the number from the 1st micro:bit, we must implement `receive number` to constantly display a vertical bar graph based on the value. Remember, the value will equal to the micro:bit's acceleration in the "x" direction.
Finally, we want to chart the acceleration. So we must first implement `plot bar graph`. `Plot Bar Graph` will display a vertical bar graph based on the value and high value. In order to transfer the receive the number from the 1st @boardname@, we must implement `receive number` to constantly display a vertical bar graph based on the value. Remember, the value will equal to the @boardname@'s acceleration in the "x" direction.
```blocks
basic.forever(() => {
@ -45,15 +45,15 @@ radio.onDataPacketReceived(({ receivedNumber }) => {
```
### ~
Notice that moving the micro:bit the farthest direction in the x direction will be -1023 on the charting beneath the simulator. The second observation will be that the LEDs will be full brightness on the 2nd micro:bit. There is a single LED turned on with the 1st micro:bit. Additionally, the graphs will reflect 0 acceleation for the 1st micro:bit. In this scenario, if you are adjusting the acceleration in the simualator, you are also changing your chart that will be produced.
Notice that moving the @boardname@ the farthest direction in the x direction will be -1023 on the charting beneath the simulator. The second observation will be that the LEDs will be full brightness on the 2nd @boardname@. There is a single LED turned on with the 1st @boardname@. Additionally, the graphs will reflect 0 acceleation for the 1st @boardname@. In this scenario, if you are adjusting the acceleration in the simualator, you are also changing your chart that will be produced.
![](/static/mb/acc.png)
### ~
NOTE: The colors of the charts reflect the color of the micro:bit simulator. In this instance, the micro:bits are blue and green. So the colors of the line graphs reflect the colors of the micro:bit
NOTE: The colors of the charts reflect the color of the @boardname@ simulator. In this instance, the @boardname@s are blue and green. So the colors of the line graphs reflect the colors of the @boardname@
### ~
After running this simulation several seconds by moving the micro:bit side to side in the x direction, you are ready to graph or chart the accceleration of the micro:bit. We want a printout of our acceleration on Excel. We will graph the fluctuating acceleration of the simulation experiment.
After running this simulation several seconds by moving the @boardname@ side to side in the x direction, you are ready to graph or chart the accceleration of the @boardname@. We want a printout of our acceleration on Excel. We will graph the fluctuating acceleration of the simulation experiment.
![](/static/mb/acc2.png)
@ -81,10 +81,10 @@ Use the Recommended Charts command on the Insert tab to quickly create a chart t
### ~
Have fun reviewing your simulation and analyze the acceleration by chart the Excel data using Excel.
* Connect the first micro:bit to your computer using your USB cable and run the charting script on it.
* Connect the second micro:bit to your computer using your USB cable and run the charting script on it.
* The first person and second person take turns tilting the micro:bit in the "x" direction while the other player charts the data on the micro:bit!
* Review and analyze the actual micro:bit device acceleration data on Excel
* Connect the first @boardname@ to your computer using your USB cable and run the charting script on it.
* Connect the second @boardname@ to your computer using your USB cable and run the charting script on it.
* The first person and second person take turns tilting the @boardname@ in the "x" direction while the other player charts the data on the @boardname@!
* Review and analyze the actual @boardname@ device acceleration data on Excel
* Display acceleration with y or z using plot bar graph by changing acceleration from "x" to "y" or "z"
```package

View File

@ -1,6 +1,6 @@
# charting quiz answers
Measure the acceleration on the micro:bit in the "x" direction.
Measure the acceleration on the @boardname@ in the "x" direction.
## Name
@ -25,7 +25,7 @@ We are creating a forever loop to constantly display the appropriate brightness
led.plotBarGraph(input.acceleration(Dimension.X), 0)
```
## 3. After vigarously moving the micro:bit from side to side along the "x" axis for a sufficient amount of time,insert the Excel graph for displaying a line chart used to display trends over time.
## 3. After vigarously moving the @boardname@ from side to side along the "x" axis for a sufficient amount of time,insert the Excel graph for displaying a line chart used to display trends over time.
<br/>

View File

@ -1,6 +1,6 @@
# charting quiz
Measure the acceleration on the micro:bit in the "x" direction.
Measure the acceleration on the @boardname@ in the "x" direction.
## Name
@ -18,6 +18,6 @@ Answer the questions while completing the tutorial. Pay attention to the dialogu
<br/>
## 3. After vigarously moving the micro:bit from side to side along the "x" axis for a sufficient amount of time,insert the Excel graph for displaying a line chart used to display trends over time.
## 3. After vigarously moving the @boardname@ from side to side along the "x" axis for a sufficient amount of time,insert the Excel graph for displaying a line chart used to display trends over time.