10 projects, first draft complete

This commit is contained in:
Tom Ball
2016-06-14 11:30:25 -04:00
parent d94c7e0157
commit a6e6dd8287
7 changed files with 161 additions and 36 deletions

View File

@ -0,0 +1,73 @@
# hack your headphones challenges
Control sound with the light level.
### ~avatar avatar
Have you ever tried to making beat box sounds based on the light level? Let's try making a beatbox with code!
### ~
Let's start by adding a variable where you can store data. Then rename the variable to "light". Then set the value of the variable to the block `light level` from the Input drawer. This will gets the `light level` from 0 (dark) to 255 (bright). The light is measured by using various LEDs from the screen. Modify your code so that your code looks like this.
```blocks
let light = input.lightLevel();
```
We want to play music on button pressed in order to register an event handler that will execute whenever when you run a script and click on button pressed on the simulator. We must start by opening the Input drawer and adding `on button pressed` A. Then add a block `rest` to plays nothing for a `1/16` beat. Modify your code so that your code looks like this.
```blocks
input.onButtonPressed(Button.A, () => {
music.rest(music.beat(BeatFraction.Sixteenth));
let light = input.lightLevel();
});
```
We click on the Logic drawer then insert a `if do` that will conditionally run code depending on whether the Boolean condition is true or false. Then insert the variable `light` into the first part of the inequality. The variable "light" will appear in the Variables drawer. Finally, we insert 25. Modify your code so that your code looks like this. If the `light level` is `less than` 25, play `ring tone` `C`. If this conditions is not true, play `ring tone` `A`.
```blocks
input.onButtonPressed(Button.A, () => {
music.rest(music.beat(BeatFraction.Sixteenth));
let light = input.lightLevel();
if (light < 25) {
music.ringTone(music.noteFrequency(Note.C));
}
else {
music.ringTone(music.noteFrequency(Note.A));
}
});
```
We click on the Logic drawer then insert a `less than` sign into the first `if` conditional that will conditionally run code depending on whether the Boolean condition is true or false. Continue this logic to continue with these conditional statements. Click on the Logic drawer. Then we want to add additional conditional statements by clicking on the gear to the left of the `if`. Add 05 `else if` and 01 `else` inside the `if do` block structure. If the `light level` is `less than` 50, play `ring tone` ``D``. If the `light level` is `less than` 100, play `ring tone` ``E``. If the `light level` is `less than` 150, play `ring tone` ``F`` If the `light level` is `less than` 180, play `ring tone` ``G``. If these conditions are not true, `ring tone` ``A``.
```blocks
input.onButtonPressed(Button.A, () => {
music.rest(music.beat(BeatFraction.Sixteenth));
let light = input.lightLevel();
if (light < 25) {
music.ringTone(music.noteFrequency(Note.C));
}
else if (light < 50) {
music.ringTone(music.noteFrequency(Note.D));
}
else if (light < 100) {
music.ringTone(music.noteFrequency(Note.E));
}
else if (light < 150) {
music.ringTone(music.noteFrequency(Note.F));
}
else if (light < 180) {
music.ringTone(music.noteFrequency(Note.G));
}
else {
music.ringTone(music.noteFrequency(Note.A));
}
});
```
* click *compile* and run your code on the micro:bit.

View File

@ -52,10 +52,10 @@ You hacked your headphones!
### Step 6
Connect your micro:bit to your computer using your USB cable and program [light beatbox](/lessons/light-beatbox/activity) music on it. Press the reset button to restart your music player!
Connect your micro:bit to your computer using your USB cable and program [light beatbox](/projects/hack-your-headphones-challenges) music on it. Press the reset button to restart your music player!
### ~avatar avatar
Excellent, you're ready to continue with the [challenges](/lessons/light-beatbox/activity)!
Excellent, you're ready to continue with the [challenges](/projects/hack-your-headphones-challenges)!
### ~

View File

@ -0,0 +1,88 @@
# Challenge
### ~avatar avatar
Welcome! The activity will teach you how to use the acceleration of the 1st micro:bit and to visualize the acceleration on the 2nd micro:bit.
Let's get started!
### ~
Let's measure `acceleration (mg)` and then `send number`. `Acceleration` is measured in **milli-gravities**, so a value of -1000 is equivalent to -1g or -9.81m/s^2. We will be able to get the acceleration value (g-force), in the specified "x" dimension. `Send number` will broadcast a number data packet to other micro:bits connected via radio.
```blocks
radio.sendNumber(input.acceleration(Dimension.X));
```
### ~
We want to display the acceleration forever. In order to do so, we need a `forever` loop. A forever loop will repeat code in the background forever.
```blocks
basic.forever(() => {
radio.sendNumber(input.acceleration(Dimension.X));
});
```
### ~
We want to register code to run when a packet is received over radio. We can implement this code by adding `on data received`.
```blocks
basic.forever(() => {
radio.sendNumber(input.acceleration(Dimension.X))
})
radio.onDataReceived(() => {
})
```
### ~
Finally, we want to chart the acceleration. So we must first implement `plot bar graph`. `Plot Bar Graph` will display a vertical bar graph based on the value and high value. In order to transfer the receive the number from the 1st micro:bit, we must implement `receive number` to constantly display a vertical bar graph based on the value. Remember, the value will equal to the micro:bit's acceleration in the "x" direction.
```blocks
basic.forever(() => {
radio.sendNumber(input.acceleration(Dimension.X))
})
radio.onDataReceived(() => {
led.plotBarGraph(radio.receiveNumber(), 1023)
})
```
### ~
Notice that moving the micro:bit the farthest direction in the x direction will be -1023 on the charting beneath the simulator. The second observation will be that the LEDs will be full brightness on the 2nd micro:bit. There is a single LED turned on with the 1st micro:bit. Additionally, the graphs will reflect 0 acceleation for the 1st micro:bit. In this scenario, if you are adjusting the acceleration in the simualator, you are also changing your chart that will be produced.
![](/static/mb/acc.png)
### ~
NOTE: The colors of the charts reflect the color of the micro:bit simulator. In this instance, the micro:bits are blue and green. So the colors of the line graphs reflect the colors of the micro:bit
### ~
After running this simulation several seconds by moving the micro:bit side to side in the x direction, you are ready to graph or chart the accceleration of the micro:bit. We want a printout of our acceleration on Excel. We will graph the fluctuating acceleration of the simulation experiment.
![](/static/mb/acc2.png)
### ~
Finally, you must open the Excel CSV file by clicking on the data.xls file that was downloaded to Downloads Folder.
![](/static/mb/data3.png)
Use the Recommended Charts command on the Insert tab to quickly create a chart thats just right for your data.
* Select the data that you want to include in your chart.
* Click Insert > Recommended Charts.
![](/static/mb/lessons/chart1.png)
* On the Recommended Charts tab, scroll through the list of chart types that Excel recommends for your data. Pick the **scatter plot**.
![](/static/mb/chart_title.png)
* Use the Chart Elements, Chart Styles, and Chart Filters buttons next to the upper-right corner of the chart to add chart elements like axis titles or data labels, to customize the look of your chart
![](/static/mb/elements_styles_filters.png)
### ~
Have fun reviewing your simulation and analyze the acceleration by chart the Excel data using Excel.
* Connect the first micro:bit to your computer using your USB cable and run the charting script on it.
* Connect the second micro:bit to your computer using your USB cable and run the charting script on it.
* The first person and second person take turns tilting the micro:bit in the "x" direction while the other player charts the data on the micro:bit!
* Review and analyze the actual micro:bit device acceleration data on Excel
* Display acceleration with y or z using plot bar graph by changing acceleration from "x" to "y" or "z"

68
docs/projects/radio.md Normal file
View File

@ -0,0 +1,68 @@
# radio
Measure the acceleration on the micro:bit in the "x" direction.
### ~avatar avatar
Welcome! This activity will teach how to use the micro:bit to chart the acceleration in the "x" direction. Let's get started!
### ~
Let's measure `acceleration (mg)` in the "x" direction. Get the acceleration value (milli g-force), in one of three specified dimensions.
```blocks
input.acceleration(Dimension.X)
```
### ~
Use the plot bar chart to visualize the acceleration on the LED screen of the micro:bit in the specified range. You implement plot Bar Graph to display a vertical bar graph based on the "value" and "high" value. Then you must insert acceleration in the X dimension to measure the acceleration.
```blocks
basic.forever(() => {
led.plotBarGraph(input.acceleration(Dimension.X), 0)
})
```
### ~
Notice that moving the micro:bit in the simulator from left to right (x direction) changes the values beneath the micro:bit in a range from 1023 to -1023 as measured in milli-gravities. By hovering over the micro:bit from left to right, you can observe changing values beneath the micro:bit simulator. Also, the LEDs shown on the Bar Graph fluctates based on the movement of the micro:bit simulator in the x direction. The line underneath the micro:bit simulator reflect the acceleration in the x direction.
NOTE: The colors of the charts reflect the color of the micro:bit simulator. In this instance, the micro:bit is yellow. So the color of the data line reflects the color of the micro:bit
![](/static/mb/data4.png)
### ~
Vigorously move the micro:bit in the micro:bit simulatator by moving the micro:bit image from side to side. Every time the micro:bit moves in the x direction in the simulator, you are generating data points that can be reviewed in Excel. The more attempts to move the micro:bit from side to side, the more data being saved in Excel. After you have vigarously moved the micro:bit simulator from side to side for a sufficient amount of time, you are ready to graph or chart the accceleration of the micro:bit. We want a printout of our acceleration on Excel that can be graphed in Excel.
### ~
We want to chart the data collected by using a tool in Excel.
The final part of this experiment is opening and reviewing the data in the Excel CSV file. Simply click on the line beneath the simulator. A CSV file will be generated to display the data points collected by moving the micro:bit in the X direction. Then click or tap on the data Excel file that was downloaded to your local ``Downloads`` Folder.
### ~
First, click or tap on the first two columns (A, B) to include the time of the data being collected; b) the results of acceleration data on the micro:bit
![](/static/mb/data7.png)
Use the Recommended Charts command on the Insert tab to quickly create a chart thats just right for your data.
* Select the data that you want to include in your chart.
* Click Insert > Recommended Charts.
![](/static/mb/lessons/chart1.png)
* On the Recommended Charts tab, scroll through the list of chart types that Excel recommends for your data. Pick the **scatter plot**.
### ~avatar avatar
Excellent, you're ready to continue with the [challenges](/projects/radio-challenges)
### ~