move lessons out of web site
will move select lessons back to "educators" section
This commit is contained in:
@ -1,68 +0,0 @@
|
||||
# Activity
|
||||
|
||||
Measure the acceleration on the micro:bit in the "x" direction.
|
||||
|
||||
### ~avatar avatar
|
||||
|
||||
Welcome! This activity will teach how to use the micro:bit to chart the acceleration in the "x" direction. Let's get started!
|
||||
|
||||
|
||||
### ~
|
||||
Let's measure `acceleration (mg)` in the "x" direction. Get the acceleration value (milli g-force), in one of three specified dimensions.
|
||||
|
||||
|
||||
```blocks
|
||||
input.acceleration(Dimension.X)
|
||||
```
|
||||
|
||||
### ~
|
||||
Use the plot bar chart to visualize the acceleration on the LED screen of the micro:bit in the specified range. You implement plot Bar Graph to display a vertical bar graph based on the "value" and "high" value. Then you must insert acceleration in the X dimension to measure the acceleration.
|
||||
|
||||
```blocks
|
||||
basic.forever(() => {
|
||||
led.plotBarGraph(input.acceleration(Dimension.X), 0)
|
||||
})
|
||||
|
||||
```
|
||||
|
||||
### ~
|
||||
Notice that moving the micro:bit in the simulator from left to right (x direction) changes the values beneath the micro:bit in a range from 1023 to -1023 as measured in milli-gravities. By hovering over the micro:bit from left to right, you can observe changing values beneath the micro:bit simulator. Also, the LEDs shown on the Bar Graph fluctates based on the movement of the micro:bit simulator in the x direction. The line underneath the micro:bit simulator reflect the acceleration in the x direction.
|
||||
|
||||
NOTE: The colors of the charts reflect the color of the micro:bit simulator. In this instance, the micro:bit is yellow. So the color of the data line reflects the color of the micro:bit
|
||||
|
||||

|
||||
|
||||
### ~
|
||||
|
||||
Vigorously move the micro:bit in the micro:bit simulatator by moving the micro:bit image from side to side. Every time the micro:bit moves in the x direction in the simulator, you are generating data points that can be reviewed in Excel. The more attempts to move the micro:bit from side to side, the more data being saved in Excel. After you have vigarously moved the micro:bit simulator from side to side for a sufficient amount of time, you are ready to graph or chart the accceleration of the micro:bit. We want a printout of our acceleration on Excel that can be graphed in Excel.
|
||||
|
||||
### ~
|
||||
|
||||
We want to chart the data collected by using a tool in Excel.
|
||||
|
||||
The final part of this experiment is opening and reviewing the data in the Excel CSV file. Simply click on the line beneath the simulator. A CSV file will be generated to display the data points collected by moving the micro:bit in the X direction. Then click or tap on the data Excel file that was downloaded to your local ``Downloads`` Folder.
|
||||
|
||||
|
||||
### ~
|
||||
|
||||
|
||||
First, click or tap on the first two columns (A, B) to include the time of the data being collected; b) the results of acceleration data on the micro:bit
|
||||
|
||||

|
||||
|
||||
Use the Recommended Charts command on the Insert tab to quickly create a chart that’s just right for your data.
|
||||
|
||||
* Select the data that you want to include in your chart.
|
||||
|
||||
* Click Insert > Recommended Charts.
|
||||
|
||||

|
||||
|
||||
* On the Recommended Charts tab, scroll through the list of chart types that Excel recommends for your data. Pick the **scatter plot**.
|
||||
|
||||
### ~avatar avatar
|
||||
|
||||
Excellent, you're ready to continue with the [challenges](/lessons/charting/challenge)
|
||||
|
||||
### ~
|
||||
|
@ -1,88 +0,0 @@
|
||||
# Challenge
|
||||
|
||||
### ~avatar avatar
|
||||
|
||||
Welcome! The activity will teach you how to use the acceleration of the 1st micro:bit and to visualize the acceleration on the 2nd micro:bit.
|
||||
Let's get started!
|
||||
|
||||
### ~
|
||||
Let's measure `acceleration (mg)` and then `send number`. `Acceleration` is measured in **milli-gravities**, so a value of -1000 is equivalent to -1g or -9.81m/s^2. We will be able to get the acceleration value (g-force), in the specified "x" dimension. `Send number` will broadcast a number data packet to other micro:bits connected via radio.
|
||||
|
||||
```blocks
|
||||
radio.sendNumber(input.acceleration(Dimension.X));
|
||||
```
|
||||
### ~
|
||||
We want to display the acceleration forever. In order to do so, we need a `forever` loop. A forever loop will repeat code in the background forever.
|
||||
|
||||
```blocks
|
||||
basic.forever(() => {
|
||||
radio.sendNumber(input.acceleration(Dimension.X));
|
||||
});
|
||||
|
||||
|
||||
```
|
||||
### ~
|
||||
We want to register code to run when a packet is received over radio. We can implement this code by adding `on data received`.
|
||||
|
||||
```blocks
|
||||
basic.forever(() => {
|
||||
radio.sendNumber(input.acceleration(Dimension.X))
|
||||
})
|
||||
radio.onDataReceived(() => {
|
||||
|
||||
})
|
||||
```
|
||||
### ~
|
||||
Finally, we want to chart the acceleration. So we must first implement `plot bar graph`. `Plot Bar Graph` will display a vertical bar graph based on the value and high value. In order to transfer the receive the number from the 1st micro:bit, we must implement `receive number` to constantly display a vertical bar graph based on the value. Remember, the value will equal to the micro:bit's acceleration in the "x" direction.
|
||||
|
||||
```blocks
|
||||
basic.forever(() => {
|
||||
radio.sendNumber(input.acceleration(Dimension.X))
|
||||
})
|
||||
radio.onDataReceived(() => {
|
||||
led.plotBarGraph(radio.receiveNumber(), 1023)
|
||||
})
|
||||
|
||||
```
|
||||
### ~
|
||||
Notice that moving the micro:bit the farthest direction in the x direction will be -1023 on the charting beneath the simulator. The second observation will be that the LEDs will be full brightness on the 2nd micro:bit. There is a single LED turned on with the 1st micro:bit. Additionally, the graphs will reflect 0 acceleation for the 1st micro:bit. In this scenario, if you are adjusting the acceleration in the simualator, you are also changing your chart that will be produced.
|
||||
|
||||

|
||||
|
||||
### ~
|
||||
NOTE: The colors of the charts reflect the color of the micro:bit simulator. In this instance, the micro:bits are blue and green. So the colors of the line graphs reflect the colors of the micro:bit
|
||||
|
||||
### ~
|
||||
After running this simulation several seconds by moving the micro:bit side to side in the x direction, you are ready to graph or chart the accceleration of the micro:bit. We want a printout of our acceleration on Excel. We will graph the fluctuating acceleration of the simulation experiment.
|
||||
|
||||

|
||||
|
||||
### ~
|
||||
Finally, you must open the Excel CSV file by clicking on the data.xls file that was downloaded to Downloads Folder.
|
||||
|
||||

|
||||
|
||||
Use the Recommended Charts command on the Insert tab to quickly create a chart that’s just right for your data.
|
||||
|
||||
* Select the data that you want to include in your chart.
|
||||
|
||||
* Click Insert > Recommended Charts.
|
||||
|
||||

|
||||
|
||||
* On the Recommended Charts tab, scroll through the list of chart types that Excel recommends for your data. Pick the **scatter plot**.
|
||||
|
||||

|
||||
|
||||
* Use the Chart Elements, Chart Styles, and Chart Filters buttons next to the upper-right corner of the chart to add chart elements like axis titles or data labels, to customize the look of your chart
|
||||
|
||||

|
||||
|
||||
### ~
|
||||
Have fun reviewing your simulation and analyze the acceleration by chart the Excel data using Excel.
|
||||
|
||||
* Connect the first micro:bit to your computer using your USB cable and run the charting script on it.
|
||||
* Connect the second micro:bit to your computer using your USB cable and run the charting script on it.
|
||||
* The first person and second person take turns tilting the micro:bit in the "x" direction while the other player charts the data on the micro:bit!
|
||||
* Review and analyze the actual micro:bit device acceleration data on Excel
|
||||
* Display acceleration with y or z using plot bar graph by changing acceleration from "x" to "y" or "z"
|
@ -1,33 +0,0 @@
|
||||
# charting quiz answers
|
||||
|
||||
Measure the acceleration on the micro:bit in the "x" direction.
|
||||
|
||||
|
||||
## Name
|
||||
|
||||
## Directions
|
||||
|
||||
Use this activity document to guide your work in the [glowing pendulum activity](/lessons/charting/acceleration)
|
||||
|
||||
Answer the questions while completing the tutorial. Pay attention to the dialogues!
|
||||
|
||||
## 1. Why are you creating a 'forever' loop?
|
||||
|
||||
<br/>
|
||||
|
||||
We are creating a forever loop to constantly display the appropriate brightness on the LED display.
|
||||
|
||||
## 2. Write the line of code to measure the acceleration with respect to the "x" axis and display this value in a bar graph.
|
||||
|
||||
<br/>
|
||||
|
||||
```blocks
|
||||
led.plotBarGraph(input.acceleration(Dimension.X), 0)
|
||||
```
|
||||
|
||||
## 3. After vigarously moving the micro:bit from side to side along the "x" axis for a sufficient amount of time,insert the Excel graph for displaying a line chart used to display trends over time.
|
||||
|
||||
<br/>
|
||||
|
||||

|
||||
|
@ -1,23 +0,0 @@
|
||||
# charting quiz
|
||||
|
||||
Measure the acceleration on the micro:bit in the "x" direction.
|
||||
|
||||
## Name
|
||||
|
||||
## Directions
|
||||
|
||||
Use this activity document to guide your work in the [glowing pendulum tutorial](/lessons/glowing-pendulum/activity)
|
||||
|
||||
Answer the questions while completing the tutorial. Pay attention to the dialogues!
|
||||
|
||||
## 1. Why are you creating a 'forever' loop?
|
||||
|
||||
<br/>
|
||||
|
||||
## 2. Write the line of code to measure the acceleration with respect to the "y" axis and store this value in a local variable called 'acceleration'.
|
||||
|
||||
<br/>
|
||||
|
||||
## 3. After vigarously moving the micro:bit from side to side along the "x" axis for a sufficient amount of time,insert the Excel graph for displaying a line chart used to display trends over time.
|
||||
|
||||
|
Reference in New Issue
Block a user