#include "pxt.h" enum class DigitalPin { P0 = MICROBIT_ID_IO_P12, // edge connector 0 P1 = MICROBIT_ID_IO_P0, // edge connector 1 P2 = MICROBIT_ID_IO_P1, // edge connector 2 P3 = MICROBIT_ID_IO_P16, // edge connector 3 C4 = MICROBIT_ID_IO_P3, // LED matrix C1 C5 = MICROBIT_ID_IO_P4, // LED matrix C2 C6 = MICROBIT_ID_IO_P10, // LED matrix C3 C7 = MICROBIT_ID_IO_P13, // LED matrix C4 C8 = MICROBIT_ID_IO_P14, // LED matrix C5 C9 = MICROBIT_ID_IO_P15, // LED matrix C6 C10 = MICROBIT_ID_IO_P9, // LED matrix C7 C11 = MICROBIT_ID_IO_P7, // LED matrix C8 C12 = MICROBIT_ID_IO_P6, // LED matrix C9 C16 = MICROBIT_ID_IO_P2, // RX C17 = MICROBIT_ID_IO_P8, // TX C18 = MICROBIT_ID_IO_P20, // SDA C19 = MICROBIT_ID_IO_P19 // SCL }; enum class AnalogPin { P1 = MICROBIT_ID_IO_P0, // edge connector 1 P2 = MICROBIT_ID_IO_P1, // edge connector 2 C4 = MICROBIT_ID_IO_P3, // LED matrix C1 C5 = MICROBIT_ID_IO_P4, // LED matrix C2 C6 = MICROBIT_ID_IO_P10, // LED matrix C3 C16 = MICROBIT_ID_IO_P2, // RX C17 = MICROBIT_ID_IO_P8, // TX MIC = MICROBIT_ID_IO_P21 // microphone }; enum class PulseValue { //% block=high High = MICROBIT_PIN_EVT_PULSE_HI, //% block=low Low = MICROBIT_PIN_EVT_PULSE_LO }; enum class PinPullMode { //% block="down" PullDown = 0, //% block="up" PullUp = 1, //% block="none" PullNone = 2 }; enum class PinEventType { //% block="edge" Edge = MICROBIT_PIN_EVENT_ON_EDGE, //% block="pulse" Pulse = MICROBIT_PIN_EVENT_ON_PULSE, //% block="touch" Touch = MICROBIT_PIN_EVENT_ON_TOUCH, //% block="none" None = MICROBIT_PIN_EVENT_NONE }; namespace pxt { MicroBitPin *getPin(int id) { switch (id) { case MICROBIT_ID_IO_P0: return &uBit.io.P0; case MICROBIT_ID_IO_P1: return &uBit.io.P1; case MICROBIT_ID_IO_P2: return &uBit.io.P2; case MICROBIT_ID_IO_P3: return &uBit.io.P3; case MICROBIT_ID_IO_P4: return &uBit.io.P4; case MICROBIT_ID_IO_P5: return &uBit.io.P5; case MICROBIT_ID_IO_P6: return &uBit.io.P6; case MICROBIT_ID_IO_P7: return &uBit.io.P7; case MICROBIT_ID_IO_P8: return &uBit.io.P8; case MICROBIT_ID_IO_P9: return &uBit.io.P9; case MICROBIT_ID_IO_P10: return &uBit.io.P10; case MICROBIT_ID_IO_P11: return &uBit.io.P11; case MICROBIT_ID_IO_P12: return &uBit.io.P12; case MICROBIT_ID_IO_P13: return &uBit.io.P13; case MICROBIT_ID_IO_P14: return &uBit.io.P14; case MICROBIT_ID_IO_P15: return &uBit.io.P15; case MICROBIT_ID_IO_P16: return &uBit.io.P16; case MICROBIT_ID_IO_P19: return &uBit.io.P19; case MICROBIT_ID_IO_P20: return &uBit.io.P20; case MICROBIT_ID_IO_P21: return &uBit.io.P21; default: return NULL; } } } // pxt namespace pins { #define PINOP(op) \ MicroBitPin *pin = getPin((int)name); \ if (!pin) return; \ pin->op #define PINREAD(op) \ MicroBitPin *pin = getPin((int)name); \ if (!pin) return 0; \ return pin->op //% MicroBitPin *getPinAddress(int id) { return getPin(id); } /** * Read the specified pin or connector as either 0 or 1 * @param name pin to read from, eg: DigitalPin.P0 */ //% help=pins/digital-read-pin weight=30 //% blockId=device_get_digital_pin block="digital read|pin %name" blockGap=8 //% name.fieldEditor="gridpicker" name.fieldOptions.columns=4 //% name.fieldOptions.tooltips="false" name.fieldOptions.width="300" int digitalReadPin(DigitalPin name) { PINREAD(getDigitalValue()); } /** * Set a pin or connector value to either 0 or 1. * @param name pin to write to, eg: DigitalPin.P0 * @param value value to set on the pin, 1 eg,0 */ //% help=pins/digital-write-pin weight=29 //% blockId=device_set_digital_pin block="digital write|pin %name|to %value" //% value.min=0 value.max=1 //% name.fieldEditor="gridpicker" name.fieldOptions.columns=4 //% name.fieldOptions.tooltips="false" name.fieldOptions.width="300" void digitalWritePin(DigitalPin name, int value) { PINOP(setDigitalValue(value)); } /** * Read the connector value as analog, that is, as a value comprised between 0 and 1023. * @param name pin to write to, eg: AnalogPin.P1 */ //% help=pins/analog-read-pin weight=25 //% blockId=device_get_analog_pin block="analog read|pin %name" blockGap="8" //% name.fieldEditor="gridpicker" name.fieldOptions.columns=4 //% name.fieldOptions.tooltips="false" name.fieldOptions.width="250" int analogReadPin(AnalogPin name) { PINREAD(getAnalogValue()); } /** * Set the connector value as analog. Value must be comprised between 0 and 1023. * @param name pin name to write to, eg: AnalogPin.P1 * @param value value to write to the pin between ``0`` and ``1023``. eg:1023,0 */ //% help=pins/analog-write-pin weight=24 //% blockId=device_set_analog_pin block="analog write|pin %name|to %value" blockGap=8 //% value.min=0 value.max=1023 //% name.fieldEditor="gridpicker" name.fieldOptions.columns=4 //% name.fieldOptions.tooltips="false" name.fieldOptions.width="250" void analogWritePin(AnalogPin name, int value) { PINOP(setAnalogValue(value)); } /** * Configure the pulse-width modulation (PWM) period of the analog output in microseconds. * If this pin is not configured as an analog output (using `analog write pin`), the operation has no effect. * @param name analog pin to set period to, eg: AnalogPin.P1 * @param micros period in micro seconds. eg:20000 */ //% help=pins/analog-set-period weight=23 blockGap=8 //% blockId=device_set_analog_period block="analog set period|pin %pin|to (µs)%micros" //% pin.fieldEditor="gridpicker" pin.fieldOptions.columns=4 //% pin.fieldOptions.tooltips="false" void analogSetPeriod(AnalogPin name, int micros) { PINOP(setAnalogPeriodUs(micros)); } /** * Configure the pin as a digital input and generate an event when the pin is pulsed either high or low. * @param name digital pin to register to, eg: DigitalPin.P0 * @param pulse the value of the pulse, eg: PulseValue.High */ //% help=pins/on-pulsed weight=22 blockGap=16 advanced=true //% blockId=pins_on_pulsed block="on|pin %pin|pulsed %pulse" //% pin.fieldEditor="gridpicker" pin.fieldOptions.columns=4 //% pin.fieldOptions.tooltips="false" pin.fieldOptions.width="300" void onPulsed(DigitalPin name, PulseValue pulse, Action body) { MicroBitPin* pin = getPin((int)name); if (!pin) return; pin->eventOn(MICROBIT_PIN_EVENT_ON_PULSE); registerWithDal((int)name, (int)pulse, body); } /** * Get the duration of the last pulse in microseconds. This function should be called from a ``onPulsed`` handler. */ //% help=pins/pulse-duration advanced=true //% blockId=pins_pulse_duration block="pulse duration (µs)" //% weight=21 blockGap=8 int pulseDuration() { return pxt::lastEvent.timestamp; } /** * Return the duration of a pulse at a pin in microseconds. * @param name the pin which measures the pulse, eg: DigitalPin.P0 * @param value the value of the pulse, eg: PulseValue.High * @param maximum duration in microseconds */ //% blockId="pins_pulse_in" block="pulse in (µs)|pin %name|pulsed %value" //% weight=20 advanced=true //% help=pins/pulse-in //% name.fieldEditor="gridpicker" name.fieldOptions.columns=4 //% name.fieldOptions.tooltips="false" name.fieldOptions.width="300" int pulseIn(DigitalPin name, PulseValue value, int maxDuration = 2000000) { MicroBitPin* pin = getPin((int)name); if (!pin) return 0; int pulse = value == PulseValue::High ? 1 : 0; uint64_t tick = system_timer_current_time_us(); uint64_t maxd = (uint64_t)maxDuration; while(pin->getDigitalValue() != pulse) { if(system_timer_current_time_us() - tick > maxd) return 0; } uint64_t start = system_timer_current_time_us(); while(pin->getDigitalValue() == pulse) { if(system_timer_current_time_us() - tick > maxd) return 0; } uint64_t end = system_timer_current_time_us(); return end - start; } // TODO FIX THIS IN THE DAL! inline void fixMotorIssue(AnalogPin name) { NRF_TIMER2->SHORTS = TIMER_SHORTS_COMPARE3_CLEAR_Msk; NRF_TIMER2->INTENCLR = TIMER_INTENCLR_COMPARE3_Msk; NRF_TIMER2->PRESCALER = 4; NRF_TIMER2->CC[3] = 20000; NRF_TIMER2->TASKS_START = 1; NRF_TIMER2->EVENTS_COMPARE[3] = 0; PINOP(getDigitalValue()); } /** * Write a value to the servo, controlling the shaft accordingly. On a standard servo, this will set the angle of the shaft (in degrees), moving the shaft to that orientation. On a continuous rotation servo, this will set the speed of the servo (with ``0`` being full-speed in one direction, ``180`` being full speed in the other, and a value near ``90`` being no movement). * @param name pin to write to, eg: AnalogPin.P1 * @param value angle or rotation speed, eg:180,90,0 */ //% help=pins/servo-write-pin weight=20 //% blockId=device_set_servo_pin block="servo write|pin %name|to %value" blockGap=8 //% parts=microservo trackArgs=0 //% value.min=0 value.max=180 //% name.fieldEditor="gridpicker" name.fieldOptions.columns=4 //% name.fieldOptions.tooltips="false" name.fieldOptions.width="250" void servoWritePin(AnalogPin name, int value) { fixMotorIssue(name); PINOP(setServoValue(value)); } /** * Specifies that a continuous servo is connected. */ //% void servoSetContinuous(AnalogPin name, bool value) { // handled in simulator } /** * Configure the IO pin as an analog/pwm output and set a pulse width. The period is 20 ms period and the pulse width is set based on the value given in **microseconds** or `1/1000` milliseconds. * @param name pin name * @param micros pulse duration in micro seconds, eg:1500 */ //% help=pins/servo-set-pulse weight=19 //% blockId=device_set_servo_pulse block="servo set pulse|pin %value|to (µs) %micros" //% value.fieldEditor="gridpicker" value.fieldOptions.columns=4 //% value.fieldOptions.tooltips="false" value.fieldOptions.width="250" void servoSetPulse(AnalogPin name, int micros) { fixMotorIssue(name); PINOP(setServoPulseUs(micros)); } MicroBitPin* pitchPin = NULL; /** * Set the pin used when using analog pitch or music. * @param name pin to modulate pitch from */ //% blockId=device_analog_set_pitch_pin block="analog set pitch pin %name" //% help=pins/analog-set-pitch-pin weight=3 advanced=true //% name.fieldEditor="gridpicker" name.fieldOptions.columns=4 //% name.fieldOptions.tooltips="false" name.fieldOptions.width="250" void analogSetPitchPin(AnalogPin name) { pitchPin = getPin((int)name); } /** * Emit a plse-width modulation (PWM) signal to the current pitch pin. Use `analog set pitch pin` to define the pitch pin. * @param frequency frequency to modulate in Hz. * @param ms duration of the pitch in milli seconds. */ //% blockId=device_analog_pitch block="analog pitch %frequency|for (ms) %ms" //% help=pins/analog-pitch weight=4 async advanced=true blockGap=8 void analogPitch(int frequency, int ms) { if (pitchPin == NULL) analogSetPitchPin(AnalogPin::P1); if (frequency <= 0) { pitchPin->setAnalogValue(0); } else { pitchPin->setAnalogValue(512); pitchPin->setAnalogPeriodUs(1000000/frequency); } if (ms > 0) { fiber_sleep(ms); pitchPin->setAnalogValue(0); // TODO why do we use wait_ms() here? it's a busy wait I think wait_ms(5); } } /** * Configure the pull directiion of of a pin. * @param name pin to set the pull mode on, eg: DigitalPin.P0 * @param pull one of the mbed pull configurations, eg: PinPullMode.PullUp */ //% help=pins/set-pull weight=3 advanced=true //% blockId=device_set_pull block="set pull|pin %pin|to %pull" //% pin.fieldEditor="gridpicker" pin.fieldOptions.columns=4 //% pin.fieldOptions.tooltips="false" pin.fieldOptions.width="300" void setPull(DigitalPin name, PinPullMode pull) { PinMode m = pull == PinPullMode::PullDown ? PinMode::PullDown : pull == PinPullMode::PullUp ? PinMode::PullUp : PinMode::PullNone; PINOP(setPull(m)); } /** * Configure the events emitted by this pin. Events can be subscribed to * using ``control.onEvent()``. * @param name pin to set the event mode on, eg: DigitalPin.P0 * @param type the type of events for this pin to emit, eg: PinEventType.Edge */ //% help=pins/set-events weight=4 advanced=true //% blockId=device_set_pin_events block="set pin %pin|to emit %type|events" //% pin.fieldEditor="gridpicker" pin.fieldOptions.columns=4 //% pin.fieldOptions.tooltips="false" pin.fieldOptions.width="300" void setEvents(DigitalPin name, PinEventType type) { getPin((int)name)->eventOn((int)type); } /** * Create a new zero-initialized buffer. * @param size number of bytes in the buffer */ //% Buffer createBuffer(int size) { return mkBuffer(NULL, size); } /** * Read `size` bytes from a 7-bit I2C `address`. */ //% Buffer i2cReadBuffer(int address, int size, bool repeat = false) { Buffer buf = createBuffer(size); uBit.i2c.read(address << 1, (char*)buf->data, size, repeat); return buf; } /** * Write bytes to a 7-bit I2C `address`. */ //% int i2cWriteBuffer(int address, Buffer buf, bool repeat = false) { return uBit.i2c.write(address << 1, (char*)buf->data, buf->length, repeat); } SPI* spi = NULL; SPI* allocSPI() { if (NULL == spi) spi = new SPI(MOSI, MISO, SCK); return spi; } /** * Write to the SPI slave and return the response * @param value Data to be sent to the SPI slave */ //% help=pins/spi-write weight=5 advanced=true //% blockId=spi_write block="spi write %value" int spiWrite(int value) { auto p = allocSPI(); return p->write(value); } /** * Set the SPI frequency * @param frequency the clock frequency, eg: 1000000 */ //% help=pins/spi-frequency weight=4 advanced=true //% blockId=spi_frequency block="spi frequency %frequency" void spiFrequency(int frequency) { auto p = allocSPI(); p->frequency(frequency); } /** * Set the SPI bits and mode * @param bits the number of bits, eg: 8 * @param mode the mode, eg: 3 */ //% help=pins/spi-format weight=3 advanced=true //% blockId=spi_format block="spi format|bits %bits|mode %mode" void spiFormat(int bits, int mode) { auto p = allocSPI(); p->format(bits, mode); } /** * Set the MOSI, MISO, SCK pins used by the SPI connection * */ //% help=pins/spi-pins weight=2 advanced=true //% blockId=spi_pins block="spi set pins|MOSI %mosi|MISO %miso|SCK %sck" //% mosi.fieldEditor="gridpicker" mosi.fieldOptions.columns=4 //% mosi.fieldOptions.tooltips="false" mosi.fieldOptions.width="250" //% miso.fieldEditor="gridpicker" miso.fieldOptions.columns=4 //% miso.fieldOptions.tooltips="false" miso.fieldOptions.width="250" //% sck.fieldEditor="gridpicker" sck.fieldOptions.columns=4 //% sck.fieldOptions.tooltips="false" sck.fieldOptions.width="250" void spiPins(DigitalPin mosi, DigitalPin miso, DigitalPin sck) { if (NULL != spi) { delete spi; spi = NULL; } spi = new SPI(getPin((int)mosi)->name, getPin((int)miso)->name, getPin((int)sck)->name); } }