namespace pxsim.input { function accForGesture(gesture: number) { let b = board().accelerometerState; b.accelerometer.activate(); if (gesture == 11 && !b.useShake) { // SHAKE b.useShake = true; runtime.queueDisplayUpdate(); } return b; } export function onGesture(gesture: number, handler: RefAction) { const b = accForGesture(gesture); pxtcore.registerWithDal(DAL.MICROBIT_ID_GESTURE, gesture, handler); } export function isGesture(gesture: number): boolean { const b = accForGesture(gesture); return b.accelerometer.getGesture() == gesture; } export function acceleration(dimension: number): number { let b = board().accelerometerState; let acc = b.accelerometer; switch (dimension) { case 0: acc.activate(AccelerometerFlag.X); return acc.getX(); case 1: acc.activate(AccelerometerFlag.Y); return acc.getY(); case 2: acc.activate(AccelerometerFlag.Z); return acc.getZ(); default: acc.activate(); return Math.floor(Math.sqrt(acc.instantaneousAccelerationSquared())); } } export function rotation(kind: number): number { const b = board().accelerometerState; const acc = b.accelerometer; acc.activate(); const x = acc.getX(MicroBitCoordinateSystem.NORTH_EAST_DOWN); const y = acc.getY(MicroBitCoordinateSystem.NORTH_EAST_DOWN); const z = acc.getZ(MicroBitCoordinateSystem.NORTH_EAST_DOWN); const roll = Math.atan2(y, z); const pitch = Math.atan(-x / (y * Math.sin(roll) + z * Math.cos(roll))); let r = 0; switch (kind) { case 0: r = pitch; break; case 1: r = roll; break; } return Math.floor(r / Math.PI * 180); } export function setAccelerometerRange(range: number) { let b = board().accelerometerState; b.accelerometer.setSampleRange(range); } } namespace pxsim { interface AccelerometerSample { x: number; y: number; z: number; } interface ShakeHistory { x: boolean; y: boolean; z: boolean; count: number; shaken: number; timer: number; } /** * Co-ordinate systems that can be used. * RAW: Unaltered data. Data will be returned directly from the accelerometer. * * SIMPLE_CARTESIAN: Data will be returned based on an easy to understand alignment, consistent with the cartesian system taught in schools. * When held upright, facing the user: * * / * +--------------------+ z * | | * | ..... | * | * ..... * | * ^ | ..... | * | | | * y +--------------------+ x--> * * * NORTH_EAST_DOWN: Data will be returned based on the industry convention of the North East Down (NED) system. * When held upright, facing the user: * * z * +--------------------+ / * | | * | ..... | * | * ..... * | * ^ | ..... | * | | | * x +--------------------+ y--> * */ export enum MicroBitCoordinateSystem { RAW, SIMPLE_CARTESIAN, NORTH_EAST_DOWN } export enum AccelerometerFlag { X = 1, Y = 2, Z = 4 } export class Accelerometer { private sigma: number = 0; // the number of ticks that the instantaneous gesture has been stable. private lastGesture: number = 0; // the last, stable gesture recorded. private currentGesture: number = 0 // the instantaneous, unfiltered gesture detected. private sample: AccelerometerSample = { x: 0, y: 0, z: -1023 } private shake: ShakeHistory = { x: false, y: false, z: false, count: 0, shaken: 0, timer: 0 }; // State information needed to detect shake events. private pitch: number; private roll: number; private id: number; public isActive = false; public sampleRange = 2; public flags: AccelerometerFlag = 0; constructor(public runtime: Runtime) { this.id = DAL.MICROBIT_ID_ACCELEROMETER; } public setSampleRange(range: number) { this.activate(); this.sampleRange = Math.max(1, Math.min(8, range)); } public activate(flags?: AccelerometerFlag) { if (!this.isActive) { this.isActive = true; this.runtime.queueDisplayUpdate(); } if (flags) this.flags |= flags; } /** * Reads the acceleration data from the accelerometer, and stores it in our buffer. * This is called by the tick() member function, if the interrupt is set! */ public update(x: number, y: number, z: number) { // read MSB values... this.sample.x = Math.floor(x); this.sample.y = Math.floor(y); this.sample.z = Math.floor(z); // Update gesture tracking this.updateGesture(); // Indicate that a new sample is available board().bus.queue(this.id, DAL.MICROBIT_ACCELEROMETER_EVT_DATA_UPDATE) } public instantaneousAccelerationSquared() { // Use pythagoras theorem to determine the combined force acting on the device. return this.sample.x * this.sample.x + this.sample.y * this.sample.y + this.sample.z * this.sample.z; } /** * Service function. Determines the best guess posture of the device based on instantaneous data. * This makes no use of historic data (except for shake), and forms this input to the filter implemented in updateGesture(). * * @return A best guess of the current posture of the device, based on instantaneous data. */ private instantaneousPosture(): number { let force = this.instantaneousAccelerationSquared(); let shakeDetected = false; // Test for shake events. // We detect a shake by measuring zero crossings in each axis. In other words, if we see a strong acceleration to the left followed by // a string acceleration to the right, then we can infer a shake. Similarly, we can do this for each acxis (left/right, up/down, in/out). // // If we see enough zero crossings in succession (MICROBIT_ACCELEROMETER_SHAKE_COUNT_THRESHOLD), then we decide that the device // has been shaken. if ((this.getX() < -DAL.MICROBIT_ACCELEROMETER_SHAKE_TOLERANCE && this.shake.x) || (this.getX() > DAL.MICROBIT_ACCELEROMETER_SHAKE_TOLERANCE && !this.shake.x)) { shakeDetected = true; this.shake.x = !this.shake.x; } if ((this.getY() < -DAL.MICROBIT_ACCELEROMETER_SHAKE_TOLERANCE && this.shake.y) || (this.getY() > DAL.MICROBIT_ACCELEROMETER_SHAKE_TOLERANCE && !this.shake.y)) { shakeDetected = true; this.shake.y = !this.shake.y; } if ((this.getZ() < -DAL.MICROBIT_ACCELEROMETER_SHAKE_TOLERANCE && this.shake.z) || (this.getZ() > DAL.MICROBIT_ACCELEROMETER_SHAKE_TOLERANCE && !this.shake.z)) { shakeDetected = true; this.shake.z = !this.shake.z; } if (shakeDetected && this.shake.count < DAL.MICROBIT_ACCELEROMETER_SHAKE_COUNT_THRESHOLD && ++this.shake.count == DAL.MICROBIT_ACCELEROMETER_SHAKE_COUNT_THRESHOLD) this.shake.shaken = 1; if (++this.shake.timer >= DAL.MICROBIT_ACCELEROMETER_SHAKE_DAMPING) { this.shake.timer = 0; if (this.shake.count > 0) { if (--this.shake.count == 0) this.shake.shaken = 0; } } if (this.shake.shaken) return DAL.MICROBIT_ACCELEROMETER_EVT_SHAKE; let sq = (n: number) => n * n if (force < sq(DAL.MICROBIT_ACCELEROMETER_FREEFALL_TOLERANCE)) return DAL.MICROBIT_ACCELEROMETER_EVT_FREEFALL; if (force > sq(DAL.MICROBIT_ACCELEROMETER_3G_TOLERANCE)) return DAL.MICROBIT_ACCELEROMETER_EVT_3G; if (force > sq(DAL.MICROBIT_ACCELEROMETER_6G_TOLERANCE)) return DAL.MICROBIT_ACCELEROMETER_EVT_6G; if (force > sq(DAL.MICROBIT_ACCELEROMETER_8G_TOLERANCE)) return DAL.MICROBIT_ACCELEROMETER_EVT_8G; // Determine our posture. if (this.getX() < (-1000 + DAL.MICROBIT_ACCELEROMETER_TILT_TOLERANCE)) return DAL.MICROBIT_ACCELEROMETER_EVT_TILT_LEFT; if (this.getX() > (1000 - DAL.MICROBIT_ACCELEROMETER_TILT_TOLERANCE)) return DAL.MICROBIT_ACCELEROMETER_EVT_TILT_RIGHT; if (this.getY() < (-1000 + DAL.MICROBIT_ACCELEROMETER_TILT_TOLERANCE)) return DAL.MICROBIT_ACCELEROMETER_EVT_TILT_DOWN; if (this.getY() > (1000 - DAL.MICROBIT_ACCELEROMETER_TILT_TOLERANCE)) return DAL.MICROBIT_ACCELEROMETER_EVT_TILT_UP; if (this.getZ() < (-1000 + DAL.MICROBIT_ACCELEROMETER_TILT_TOLERANCE)) return DAL.MICROBIT_ACCELEROMETER_EVT_FACE_UP; if (this.getZ() > (1000 - DAL.MICROBIT_ACCELEROMETER_TILT_TOLERANCE)) return DAL.MICROBIT_ACCELEROMETER_EVT_FACE_DOWN; return 0; } updateGesture() { // Determine what it looks like we're doing based on the latest sample... let g = this.instantaneousPosture(); // Perform some low pass filtering to reduce jitter from any detected effects if (g != this.currentGesture) { this.currentGesture = g; this.sigma = 0; } else if (this.sigma < DAL.MICROBIT_ACCELEROMETER_GESTURE_DAMPING) { ++this.sigma; } if (this.sigma >= DAL.MICROBIT_ACCELEROMETER_GESTURE_DAMPING) { this.enqueueCurrentGesture(); } } forceGesture(gesture: number) { this.currentGesture = gesture; this.enqueueCurrentGesture(); } private enqueueCurrentGesture() { if (this.currentGesture != this.lastGesture) { this.lastGesture = this.currentGesture; board().bus.queue(DAL.MICROBIT_ID_GESTURE, this.lastGesture); } } /** * Reads the X axis value of the latest update from the accelerometer. * @param system The coordinate system to use. By default, a simple cartesian system is provided. * @return The force measured in the X axis, in milli-g. * * Example: * @code * uBit.accelerometer.getX(); * uBit.accelerometer.getX(RAW); * @endcode */ public getX(system: MicroBitCoordinateSystem = MicroBitCoordinateSystem.SIMPLE_CARTESIAN): number { this.activate(); switch (system) { case MicroBitCoordinateSystem.SIMPLE_CARTESIAN: return -this.sample.x; case MicroBitCoordinateSystem.NORTH_EAST_DOWN: return this.sample.y; //case MicroBitCoordinateSystem.SIMPLE_CARTESIAN.RAW: default: return this.sample.x; } } /** * Reads the Y axis value of the latest update from the accelerometer. * @param system The coordinate system to use. By default, a simple cartesian system is provided. * @return The force measured in the Y axis, in milli-g. * * Example: * @code * uBit.accelerometer.getY(); * uBit.accelerometer.getY(RAW); * @endcode */ public getY(system: MicroBitCoordinateSystem = MicroBitCoordinateSystem.SIMPLE_CARTESIAN): number { this.activate(); switch (system) { case MicroBitCoordinateSystem.SIMPLE_CARTESIAN: return -this.sample.y; case MicroBitCoordinateSystem.NORTH_EAST_DOWN: return -this.sample.x; //case RAW: default: return this.sample.y; } } /** * Reads the Z axis value of the latest update from the accelerometer. * @param system The coordinate system to use. By default, a simple cartesian system is provided. * @return The force measured in the Z axis, in milli-g. * * Example: * @code * uBit.accelerometer.getZ(); * uBit.accelerometer.getZ(RAW); * @endcode */ public getZ(system: MicroBitCoordinateSystem = MicroBitCoordinateSystem.SIMPLE_CARTESIAN): number { this.activate(); switch (system) { case MicroBitCoordinateSystem.NORTH_EAST_DOWN: return -this.sample.z; //case MicroBitCoordinateSystem.SIMPLE_CARTESIAN: //case MicroBitCoordinateSystem.RAW: default: return this.sample.z; } } /** * Provides a rotation compensated pitch of the device, based on the latest update from the accelerometer. * @return The pitch of the device, in degrees. * * Example: * @code * uBit.accelerometer.getPitch(); * @endcode */ public getPitch(): number { this.activate(); return Math.floor((360 * this.getPitchRadians()) / (2 * Math.PI)); } getPitchRadians(): number { this.recalculatePitchRoll(); return this.pitch; } /** * Provides a rotation compensated roll of the device, based on the latest update from the accelerometer. * @return The roll of the device, in degrees. * * Example: * @code * uBit.accelerometer.getRoll(); * @endcode */ public getRoll(): number { this.activate(); return Math.floor((360 * this.getRollRadians()) / (2 * Math.PI)); } getRollRadians(): number { this.recalculatePitchRoll(); return this.roll; } getGesture(): number { return this.lastGesture; } /** * Recalculate roll and pitch values for the current sample. * We only do this at most once per sample, as the necessary trigonemteric functions are rather * heavyweight for a CPU without a floating point unit... */ recalculatePitchRoll() { let x = this.getX(MicroBitCoordinateSystem.NORTH_EAST_DOWN); let y = this.getY(MicroBitCoordinateSystem.NORTH_EAST_DOWN); let z = this.getZ(MicroBitCoordinateSystem.NORTH_EAST_DOWN); this.roll = Math.atan2(y, z); this.pitch = Math.atan(-x / (y * Math.sin(this.roll) + z * Math.cos(this.roll))); } } export class AccelerometerState { accelerometer: Accelerometer; useShake = false; constructor(runtime: Runtime) { this.accelerometer = new Accelerometer(runtime); } shake() { this.accelerometer.forceGesture(DAL.MICROBIT_ACCELEROMETER_EVT_SHAKE); // SHAKE == 11 } } }