/// interface Math { imul(x: number, y: number): number; } namespace pxt.editor { import UF2 = pxtc.UF2; const pageSize = 1024; const numPages = 256; const timeoutMessage = "timeout"; function murmur3_core(data: Uint8Array) { let h0 = 0x2F9BE6CC; let h1 = 0x1EC3A6C8; for (let i = 0; i < data.length; i += 4) { let k = HF2.read32(data, i) >>> 0 k = Math.imul(k, 0xcc9e2d51); k = (k << 15) | (k >>> 17); k = Math.imul(k, 0x1b873593); h0 ^= k; h1 ^= k; h0 = (h0 << 13) | (h0 >>> 19); h1 = (h1 << 13) | (h1 >>> 19); h0 = (Math.imul(h0, 5) + 0xe6546b64) >>> 0; h1 = (Math.imul(h1, 5) + 0xe6546b64) >>> 0; } return [h0, h1] } class DAPWrapper { cortexM: DapJS.CortexM packetIo: HF2.PacketIO; cmsisdap: any; flashing = true; pbuf = new U.PromiseBuffer(); private useSerial = true; constructor(h: HF2.PacketIO) { this.packetIo = h; h.onData = buf => { // console.log("RD: " + pxt.Util.toHex(buf)) this.pbuf.push(buf); } this.allocDAP() const readSerial = () => { if (!this.useSerial) { return } if (this.flashing) { setTimeout(readSerial, 300) return } this.cmsisdap.cmdNums(0x83, []) .then((r: number[]) => { const len = r[1] let str = "" for (let i = 2; i < len + 2; ++i) { str += String.fromCharCode(r[i]) } if (str.length > 0) { U.nextTick(readSerial) window.postMessage({ type: 'serial', id: 'n/a', // TODO data: str }, "*") // console.log("SERIAL: " + str) } else setTimeout(readSerial, 50) }, (err: any) => { setTimeout(readSerial, 1000) }) } readSerial() } private allocDAP() { /* let sendMany = (cmds: Uint8Array[]) => { return h.talksAsync(cmds.map(c => ({ cmd: 0, data: c }))); } if (!h.talksAsync) sendMany = null; */ let dev = new DapJS.DAP({ write: writeAsync, close: this.disconnectAsync, read: readAsync, //sendMany: sendMany }); this.cmsisdap = (dev as any).dap; this.cortexM = new DapJS.CortexM(dev); let h = this.packetIo let pbuf = this.pbuf function writeAsync(data: ArrayBuffer) { // console.log("WR: " + pxt.Util.toHex(new Uint8Array(data))); return h.sendPacketAsync(new Uint8Array(data)); } function readAsync() { return pbuf.shiftAsync(); } } reconnectAsync(first: boolean) { // configure serial at 115200 if (!first) return this.packetIo.reconnectAsync() .then(() => this.allocDAP()) .then(() => this.cortexM.init()) .then(() => this.cmsisdap.cmdNums(0x82, [0x00, 0xC2, 0x01, 0x00])) .then(() => { }, err => { this.useSerial = false }) else return this.cortexM.init() .then(() => this.cmsisdap.cmdNums(0x82, [0x00, 0xC2, 0x01, 0x00])) .then(() => { }, err => { this.useSerial = false }) } disconnectAsync() { return this.packetIo.disconnectAsync(); } } let packetIoPromise: Promise; function initPacketIOAsync(): Promise { if (!packetIoPromise) { packetIoPromise = pxt.HF2.mkPacketIOAsync() .catch(err => { packetIoPromise = null; return Promise.reject(err); }); return packetIoPromise; } else { let packetIo: pxt.HF2.PacketIO; return packetIoPromise .then((io) => { packetIo = io; return io.reconnectAsync(); }) .then(() => packetIo); } } let previousDapWrapper: DAPWrapper; function dapAsync() { if (previousDapWrapper) return Promise.resolve(previousDapWrapper) return Promise.resolve() .then(() => { if (previousDapWrapper) { return previousDapWrapper.disconnectAsync() .finally(() => { previousDapWrapper = null; }); } return Promise.resolve(); }) .then(() => initPacketIOAsync()) .then(h => { let w = new DAPWrapper(h) previousDapWrapper = w; return w.reconnectAsync(true) .then(() => { return w }) }) } function canHID(): boolean { let r = false if (pxt.usb.isEnabled) { r = true } else if (U.isNodeJS) { r = true } else { const forceHexDownload = /forceHexDownload/i.test(window.location.href); const isUwp = !!(window as any).Windows; if (Cloud.isLocalHost() && Cloud.localToken && !forceHexDownload || isUwp) r = true } return r; } function initAsync() { if (canHID()) { return dapAsync(); } else { return Promise.reject(new Error("no HID")) } } function pageAlignBlocks(blocks: UF2.Block[], pageSize: number) { U.assert(pageSize % 256 == 0) let res: UF2.Block[] = [] for (let i = 0; i < blocks.length;) { let b0 = blocks[i] let newbuf = new Uint8Array(pageSize) let startPad = b0.targetAddr & (pageSize - 1) let newAddr = b0.targetAddr - startPad for (; i < blocks.length; ++i) { let b = blocks[i] if (b.targetAddr + b.payloadSize > newAddr + pageSize) break U.memcpy(newbuf, b.targetAddr - newAddr, b.data, 0, b.payloadSize) } let bb = U.flatClone(b0) bb.data = newbuf bb.targetAddr = newAddr bb.payloadSize = pageSize res.push(bb) } return res } const flashPageBINquick = new Uint32Array([ 0xbe00be00, // bkpt - LR is set to this 0x2480b5f0, 0x00e42300, 0x58cd58c2, 0xd10342aa, 0x42a33304, 0xbdf0d1f8, 0x4b162502, 0x509d4a16, 0x2d00591d, 0x24a1d0fc, 0x511800e4, 0x3cff3c09, 0x591e0025, 0xd0fc2e00, 0x509c2400, 0x2c00595c, 0x2401d0fc, 0x509c2580, 0x595c00ed, 0xd0fc2c00, 0x00ed2580, 0x002e2400, 0x5107590f, 0x2f00595f, 0x3404d0fc, 0xd1f742ac, 0x50992100, 0x2a00599a, 0xe7d0d0fc, 0x4001e000, 0x00000504, ]) // doesn't check if data is already there - for timing const flashPageBIN = new Uint32Array([ 0xbe00be00, // bkpt - LR is set to this 0x2402b5f0, 0x4a174b16, 0x2480509c, 0x002500e4, 0x2e00591e, 0x24a1d0fc, 0x511800e4, 0x2c00595c, 0x2400d0fc, 0x2480509c, 0x002500e4, 0x2e00591e, 0x2401d0fc, 0x595c509c, 0xd0fc2c00, 0x00ed2580, 0x002e2400, 0x5107590f, 0x2f00595f, 0x3404d0fc, 0xd1f742ac, 0x50992100, 0x2a00599a, 0xbdf0d0fc, 0x4001e000, 0x00000504, ]) // void computeHashes(uint32_t *dst, uint8_t *ptr, uint32_t pageSize, uint32_t numPages) const computeChecksums2 = new Uint32Array([ 0x4c27b5f0, 0x44a52680, 0x22009201, 0x91004f25, 0x00769303, 0x24080013, 0x25010019, 0x40eb4029, 0xd0002900, 0x3c01407b, 0xd1f52c00, 0x468c0091, 0xa9044665, 0x506b3201, 0xd1eb42b2, 0x089b9b01, 0x23139302, 0x9b03469c, 0xd104429c, 0x2000be2a, 0x449d4b15, 0x9f00bdf0, 0x4d149e02, 0x49154a14, 0x3e01cf08, 0x2111434b, 0x491341cb, 0x405a434b, 0x4663405d, 0x230541da, 0x4b10435a, 0x466318d2, 0x230541dd, 0x4b0d435d, 0x2e0018ed, 0x6002d1e7, 0x9a009b01, 0x18d36045, 0x93003008, 0xe7d23401, 0xfffffbec, 0xedb88320, 0x00000414, 0x1ec3a6c8, 0x2f9be6cc, 0xcc9e2d51, 0x1b873593, 0xe6546b64, ]) let startTime = 0 function log(msg: string) { let now = Date.now() if (!startTime) startTime = now now -= startTime let ts = ("00000" + now).slice(-5) pxt.log(`HID ${ts}: ${msg}`) } const membase = 0x20000000 const loadAddr = membase const dataAddr = 0x20002000 const stackAddr = 0x20001000 export const bufferConcat = (bufs: Uint8Array[]) => { let len = 0; for (const b of bufs) { len += b.length; } const r = new Uint8Array(len); len = 0; for (const b of bufs) { r.set(b, len); len += b.length; } return r; }; function fullVendorCommandFlashAsync(resp: pxtc.CompileResult, wrap: DAPWrapper): Promise { const chunkSize = 62; let aborted = false; return Promise.resolve() .then(() => { return wrap.cmsisdap.cmdNums(0x8A /* DAPLinkFlash.OPEN */, [1]); }) .then((res) => { const hexUint8 = U.stringToUint8Array(resp.outfiles[pxtc.BINARY_HEX]); const hexArray: number[] = Array.prototype.slice.call(hexUint8); const sendPages = (offset: number = 0): Promise => { const end = Math.min(hexArray.length, offset + chunkSize); const nextPage = hexArray.slice(offset, end); nextPage.unshift(nextPage.length); return wrap.cmsisdap.cmdNums(0x8C /* DAPLinkFlash.WRITE */, nextPage) .then(() => { if (!aborted && end < hexArray.length) { return sendPages(end); } return Promise.resolve(); }); } return sendPages(); }) .then((res) => { return wrap.cmsisdap.cmdNums(0x8B /* DAPLinkFlash.CLOSE */, []); }) .timeout(60000, timeoutMessage) .catch((e) => { aborted = true; return wrap.cmsisdap.cmdNums(0x89 /* DAPLinkFlash.RESET */, []) .catch((e2: any) => { // Best effort reset, no-op if there's an error }) .then(() => { return Promise.reject(e); }); }); } function quickHidFlashAsync(resp: pxtc.CompileResult, wrap: DAPWrapper): Promise { let logV = (msg: string) => { } //let logV = log let aborted = false; const runFlash = (b: UF2.Block, dataAddr: number) => { const cmd = wrap.cortexM.prepareCommand(); cmd.halt(); cmd.writeCoreRegister(DapJS.CortexReg.PC, loadAddr + 4 + 1); cmd.writeCoreRegister(DapJS.CortexReg.LR, loadAddr + 1); cmd.writeCoreRegister(DapJS.CortexReg.SP, stackAddr); cmd.writeCoreRegister(0, b.targetAddr); cmd.writeCoreRegister(1, dataAddr); return Promise.resolve() .then(() => { logV("setregs") return cmd.go() }) .then(() => { logV("dbg en") // starts the program return wrap.cortexM.debug.enable() }) } let checksums: Uint8Array return getFlashChecksumsAsync(wrap) .then(buf => { checksums = buf; log("write code"); return wrap.cortexM.memory.writeBlock(loadAddr, flashPageBIN); }) .then(() => { log("convert"); // TODO this is seriously inefficient (130ms on a fast machine) let uf2 = UF2.newBlockFile(); UF2.writeHex(uf2, resp.outfiles[pxtc.BINARY_HEX].split(/\r?\n/)); let bytes = U.stringToUint8Array(UF2.serializeFile(uf2)); let parsed = UF2.parseFile(bytes); let aligned = pageAlignBlocks(parsed, pageSize); log(`initial: ${aligned.length} pages`); aligned = onlyChanged(aligned, checksums); log(`incremental: ${aligned.length} pages`); return Promise.mapSeries(U.range(aligned.length), i => { if (aborted) return Promise.resolve(); let b = aligned[i]; if (b.targetAddr >= 0x10000000) return Promise.resolve(); logV("about to write at 0x" + b.targetAddr.toString(16)); let writeBl = Promise.resolve(); let thisAddr = (i & 1) ? dataAddr : dataAddr + pageSize; let nextAddr = (i & 1) ? dataAddr + pageSize : dataAddr; if (i == 0) { let u32data = new Uint32Array(b.data.length / 4); for (let i = 0; i < b.data.length; i += 4) u32data[i >> 2] = HF2.read32(b.data, i); writeBl = wrap.cortexM.memory.writeBlock(thisAddr, u32data); } return writeBl .then(() => runFlash(b, thisAddr)) .then(() => { let next = aligned[i + 1]; if (!next) return Promise.resolve(); logV("write next"); let buf = new Uint32Array(next.data.buffer); return wrap.cortexM.memory.writeBlock(nextAddr, buf); }) .then(() => { logV("wait"); return wrap.cortexM.waitForHalt(500); }) .then(() => { logV("done block"); }); }) .then(() => { log("flash done"); pxt.tickEvent("hid.flash.done"); return wrap.cortexM.reset(false); }) .then(() => { wrap.flashing = false; }); }) .timeout(25000, timeoutMessage) .catch((e) => { aborted = true; return Promise.reject(e); }); } function flashAsync(resp: pxtc.CompileResult, d: pxt.commands.DeployOptions = {}): Promise { startTime = 0 let wrap: DAPWrapper log("init") d.showNotification(U.lf("Downloading...")); pxt.tickEvent("hid.flash.start"); return Promise.resolve() .then(() => { if (previousDapWrapper) { previousDapWrapper.flashing = true; return Promise.delay(100); } return Promise.resolve(); }) .then(initAsync) .then(w => { wrap = w log("reset"); return wrap.cortexM.init() .then(() => wrap.cortexM.reset(true)) .catch(e => { log("trying re-connect"); return wrap.reconnectAsync(false) .then(() => wrap.cortexM.reset(true)); }); }) .then(() => wrap.cortexM.memory.readBlock(0x10001014, 1, pageSize)) .then(v => { if (HF2.read32(v, 0) != 0x3C000) { pxt.tickEvent("hid.flash.uicrfail"); return fullVendorCommandFlashAsync(resp, wrap); } return quickHidFlashAsync(resp, wrap); }) .catch(e => { if (e.type === "devicenotfound" && d.reportDeviceNotFoundAsync) { pxt.tickEvent("hid.flash.devicenotfound"); return d.reportDeviceNotFoundAsync("/device/windows-app/troubleshoot", resp); } else if (e.message === timeoutMessage) { pxt.tickEvent("hid.flash.timeout"); return previousDapWrapper.reconnectAsync(true) .catch((e) => { // Best effort disconnect; at this point we don't even know the state of the device pxt.reportException(e); }) .then(() => { return resp.confirmAsync({ header: lf("Something went wrong..."), body: lf("One-click download took too long. Please disconnect your {0} from your computer and reconnect it, then manually download your program using drag and drop.", pxt.appTarget.appTheme.boardName || lf("device")), disagreeLbl: lf("Ok"), hideAgree: true }); }) .then(() => { return pxt.commands.saveOnlyAsync(resp); }); } else if (e.isUserError) { d.reportError(e.message); return Promise.resolve(); } else { pxt.tickEvent("hid.flash.unknownerror"); return resp.confirmAsync({ header: U.lf("Something went wrong..."), body: U.lf("Please manually download your program to your device using drag and drop. One-click download might work afterwards."), disagreeLbl: lf("Ok"), hideAgree: true }) .then(() => { return pxt.commands.saveOnlyAsync(resp); }); } }); } function getFlashChecksumsAsync(wrap: DAPWrapper) { log("getting existing flash checksums") let pages = numPages return wrap.cortexM.runCode(computeChecksums2, loadAddr, loadAddr + 1, 0xffffffff, stackAddr, true, dataAddr, 0, pageSize, pages) .then(() => wrap.cortexM.memory.readBlock(dataAddr, pages * 2, pageSize)) } function onlyChanged(blocks: UF2.Block[], checksums: Uint8Array) { return blocks.filter(b => { let idx = b.targetAddr / pageSize U.assert((idx | 0) == idx) U.assert(b.data.length == pageSize) if (idx * 8 + 8 > checksums.length) return true // out of range? let c0 = HF2.read32(checksums, idx * 8) let c1 = HF2.read32(checksums, idx * 8 + 4) let ch = murmur3_core(b.data) if (c0 == ch[0] && c1 == ch[1]) return false return true }) } export function deployCoreAsync(resp: pxtc.CompileResult, d: pxt.commands.DeployOptions = {}): Promise { const saveHexAsync = () => { return pxt.commands.saveOnlyAsync(resp); }; return Promise.resolve() .then(() => { const isUwp = !!(window as any).Windows; if (isUwp) { // Go straight to flashing return flashAsync(resp, d); } if (!pxt.usb.isEnabled) { return saveHexAsync(); } return pxt.usb.isPairedAsync() .then((isPaired) => { if (isPaired) { // Already paired from earlier in the session or from previous session return flashAsync(resp, d); } // No device paired, prompt user return saveHexAsync(); }); }) } /** * FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE to ` # # # # # . . . . # . . . . . . . . . # . . . . # ` */ function patchBlocks(pkgTargetVersion: string, dom: Element) { // is this a old script? if (pxt.semver.majorCmp(pkgTargetVersion || "0.0.0", "1.0.0") >= 0) return; // showleds const nodes = U.toArray(dom.querySelectorAll("block[type=device_show_leds]")) .concat(U.toArray(dom.querySelectorAll("block[type=device_build_image]"))) .concat(U.toArray(dom.querySelectorAll("shadow[type=device_build_image]"))) .concat(U.toArray(dom.querySelectorAll("block[type=device_build_big_image]"))) .concat(U.toArray(dom.querySelectorAll("shadow[type=device_build_big_image]"))); nodes.forEach(node => { // don't rewrite if already upgraded, eg. field LEDS already present if (U.toArray(node.children).filter(child => child.tagName == "field" && "LEDS" == child.getAttribute("name"))[0]) return; // read LEDxx value and assmebly into a new field const leds: string[][] = [[], [], [], [], []]; U.toArray(node.children) .filter(child => child.tagName == "field" && /^LED\d+$/.test(child.getAttribute("name"))) .forEach(lednode => { let n = lednode.getAttribute("name"); let col = parseInt(n[3]); let row = parseInt(n[4]); leds[row][col] = lednode.innerHTML == "TRUE" ? "#" : "."; // remove node node.removeChild(lednode); }); // add new field const f = node.ownerDocument.createElement("field"); f.setAttribute("name", "LEDS"); const s = '`\n' + leds.map(row => row.join('')).join('\n') + '\n`'; f.appendChild(node.ownerDocument.createTextNode(s)); node.insertBefore(f, null); }); // radio /* receivedNumber name value receivedString converts to receivedNumber name value receivedString */ const varids: pxt.Map = {}; function addField(node: Element, renameMap: pxt.Map, name: string) { const f = node.ownerDocument.createElement("field"); f.setAttribute("name", "HANDLER_" + name) f.setAttribute("id", varids[renameMap[name] || name]); f.appendChild(node.ownerDocument.createTextNode(name)); node.appendChild(f); } U.toArray(dom.querySelectorAll("variable")).forEach(node => varids[node.innerHTML] = node.getAttribute("id")); U.toArray(dom.querySelectorAll("block[type=radio_on_packet]")) .forEach(node => { const mutation = node.querySelector("mutation"); if (!mutation) return; const renameMap = JSON.parse(node.getAttribute("renamemap") || "{}"); const props = mutation.getAttribute("callbackproperties"); if (props) { const parts = props.split(","); // It's tempting to generate radio_on_number if parts.length === 0 but // that would create a variable named "receivedNumber" and possibly shadow // an existing variable in the user's program. It's safer to stick to the // old block. if (parts.length === 1) { if (parts[0] === "receivedNumber") { node.setAttribute("type", "radio_on_number"); node.removeChild(node.querySelector("field[name=receivedNumber]")); addField(node, renameMap, "receivedNumber"); } else if (parts[0] === "receivedString") { node.setAttribute("type", "radio_on_string"); node.removeChild(node.querySelector("field[name=receivedString]")); addField(node, renameMap, "receivedString"); } else { return; } node.removeChild(mutation); } else if (parts.length === 2 && parts.indexOf("receivedNumber") !== -1 && parts.indexOf("receivedString") !== -1) { node.setAttribute("type", "radio_on_value"); node.removeChild(node.querySelector("field[name=receivedNumber]")); node.removeChild(node.querySelector("field[name=receivedString]")); addField(node, renameMap, "name"); addField(node, renameMap, "value"); node.removeChild(mutation); } } }) // device_random now refers to randomRange() so we need to add the missing lower bound argument U.toArray(dom.querySelectorAll("block[type=device_random]")) .concat(U.toArray(dom.querySelectorAll("shadow[type=device_random]"))) .forEach(node => { if (getValue(node, "min")) return; const v = node.ownerDocument.createElement("value"); v.setAttribute("name", "min"); addNumberShadow(v); node.appendChild(v); }); /* DIVIDE 0 2 1 3 */ U.toArray(dom.querySelectorAll("block[type=math_arithmetic]")) .concat(U.toArray(dom.querySelectorAll("shadow[type=math_arithmetic]"))) .forEach(node => { const op = getField(node, "OP"); if (!op || op.textContent.trim() !== "DIVIDE") return; // Convert to integer division /* idiv 0 0 */ node.setAttribute("type", "math_js_op"); op.textContent = "idiv"; const mutation = node.ownerDocument.createElement("mutation"); mutation.setAttribute("op-type", "infix"); // mutation has to be first or Blockly will drop the second argument node.insertBefore(mutation, node.firstChild); const a = getValue(node, "A"); if (a) a.setAttribute("name", "ARG0"); const b = getValue(node, "B"); if (b) b.setAttribute("name", "ARG1"); }); // math_number_minmax U.toArray(dom.querySelectorAll("block[type=math_number_minmax]")) .concat(U.toArray(dom.querySelectorAll("shadow[type=math_number_minmax]"))) .forEach(node => { // Change the name of the NUM field to SLIDER const numField = getField(node, "NUM"); if (numField) { numField.setAttribute("name", "SLIDER"); } }); } initExtensionsAsync = function (opts: pxt.editor.ExtensionOptions): Promise { pxt.debug('loading microbit target extensions...') if (!Math.imul) Math.imul = function (a, b) { const ah = (a >>> 16) & 0xffff; const al = a & 0xffff; const bh = (b >>> 16) & 0xffff; const bl = b & 0xffff; // the shift by 0 fixes the sign on the high part // the final |0 converts the unsigned value into a signed value return ((al * bl) + (((ah * bl + al * bh) << 16) >>> 0) | 0); }; const res: pxt.editor.ExtensionResult = { hexFileImporters: [{ id: "blockly", canImport: data => data.meta.cloudId == "microbit.co.uk" && data.meta.editor == "blockly", importAsync: (project, data) => project.createProjectAsync({ filesOverride: { "main.blocks": data.source }, name: data.meta.name }) }] }; pxt.usb.setFilters([{ vendorId: 0x0D28, productId: 0x0204, classCode: 0xff, subclassCode: 0x03 }]) if (canHID()) pxt.commands.deployCoreAsync = deployCoreAsync; res.blocklyPatch = patchBlocks; res.showUploadInstructionsAsync = showUploadInstructionsAsync; res.webUsbPairDialogAsync = webUsbPairDialogAsync; return Promise.resolve(res); } function getField(parent: Element, name: string) { return getFieldOrValue(parent, name, true); } function getValue(parent: Element, name: string) { return getFieldOrValue(parent, name, false); } function getFieldOrValue(parent: Element, name: string, isField: boolean) { const nodeType = isField ? "field" : "value"; for (let i = 0; i < parent.children.length; i++) { const child = parent.children.item(i); if (child.tagName === nodeType && child.getAttribute("name") === name) { return child; } } return undefined; } function addNumberShadow(valueNode: Element) { const s = valueNode.ownerDocument.createElement("shadow"); s.setAttribute("type", "math_number"); const f = valueNode.ownerDocument.createElement("field"); f.setAttribute("name", "NUM"); f.textContent = "0"; s.appendChild(f); valueNode.appendChild(s); } function webUsbPairDialogAsync(confirmAsync: (options: any) => Promise): Promise { const boardName = pxt.appTarget.appTheme.boardName || "???"; const htmlBody = ` ${lf("First time here?")} ${lf("You must have version 0248 or above of the firmware")} ${lf("Check your firmware version here and update if needed")} 1 ${lf("Connect the {0} to your computer with a USB cable", boardName)} ${lf("Use the microUSB port on the top of the {0}", boardName)} 2 ${lf("Pair your {0}", boardName)} ${lf("Click 'Pair device' below and select BBC micro:bit CMSIS-DAP or DAPLink CMSIS-DAP from the list")} `; const buttons: any[] = []; const docUrl = pxt.appTarget.appTheme.usbDocs; if (docUrl) { buttons.push({ label: lf("Help"), icon: "help", className: "lightgrey", url: `${docUrl}/webusb` }); } return confirmAsync({ header: lf("Pair device for one-click downloads"), htmlBody, hasCloseIcon: true, agreeLbl: lf("Pair device"), agreeIcon: "usb", hideCancel: true, className: 'downloaddialog', buttons }); } function showUploadInstructionsAsync(fn: string, url: string, confirmAsync: (options: any) => Promise) { const boardName = pxt.appTarget.appTheme.boardName || "???"; const boardDriveName = pxt.appTarget.appTheme.driveDisplayName || pxt.appTarget.compile.driveName || "???"; // https://msdn.microsoft.com/en-us/library/cc848897.aspx // "For security reasons, data URIs are restricted to downloaded resources. // Data URIs cannot be used for navigation, for scripting, or to populate frame or iframe elements" const downloadAgain = !pxt.BrowserUtils.isIE() && !pxt.BrowserUtils.isEdge(); const docUrl = pxt.appTarget.appTheme.usbDocs; const htmlBody = ` 1 ${lf("Connect the {0} to your computer with a USB cable", boardName)} ${lf("Use the microUSB port on the top of the {0}", boardName)} 2 ${lf("Move the .hex file to the {0}", boardName)} ${lf("Locate the downloaded .hex file and drag it to the {0} drive", boardDriveName)} `; const buttons: any[] = []; if (downloadAgain) { buttons.push({ label: fn, icon: "download", className: "lightgrey focused", url, fileName: fn }); } if (docUrl) { buttons.push({ label: lf("Help"), icon: "help", className: "lightgrey", url: docUrl }); } return confirmAsync({ header: lf("Download to your {0}", pxt.appTarget.appTheme.boardName), htmlBody, hasCloseIcon: true, hideCancel: true, hideAgree: true, className: 'downloaddialog', buttons //timeout: 20000 }).then(() => { }); } }