pxt-calliope/libs/core/pxtbase.h
Peli de Halleux 56252de874
buffer data vs payload app compat fix (#854)
* buffer data vs payload app compat fix

* added PXT_MICROBIT_TAGGED_INT
2018-06-04 14:37:26 -07:00

710 lines
18 KiB
C++

#ifndef __PXTBASE_H
#define __PXTBASE_H
//#define PXT_MEMLEAK_DEBUG 1
#pragma GCC diagnostic ignored "-Wunused-parameter"
#pragma GCC diagnostic ignored "-Wformat"
#pragma GCC diagnostic ignored "-Warray-bounds"
// helpful define to handle C++ differences in package
#define PXT_MICROBIT_TAGGED_INT 1
// cross version compatible way of access data field
#ifndef PXT_BUFFER_DATA
#define PXT_BUFFER_DATA(buffer) buffer->data
#endif
// needed for gcc6; not sure why
#undef min
#undef max
#define NOLOG(...) \
do { \
} while (0)
#define MEMDBG_ENABLED 0
#define MEMDBG NOLOG
#include "pxtconfig.h"
#define intcheck(...) check(__VA_ARGS__)
//#define intcheck(...) do {} while (0)
#include <string.h>
#include <stdint.h>
#include <math.h>
#include <new>
#ifdef PXT_MEMLEAK_DEBUG
#include <set>
#endif
#include "pxtcore.h"
#ifndef PXT_VTABLE_SHIFT
#define PXT_VTABLE_SHIFT 2
#endif
#define CONCAT_1(a, b) a##b
#define CONCAT_0(a, b) CONCAT_1(a, b)
#define STATIC_ASSERT(e) enum { CONCAT_0(_static_assert_, __LINE__) = 1 / ((e) ? 1 : 0) };
#ifndef ramint_t
// this type limits size of arrays
#ifdef __linux__
#define ramint_t uint32_t
#else
#define ramint_t uint16_t
#endif
#endif
#if 0
inline void *operator new(size_t, void *p) {
return p;
}
inline void *operator new[](size_t, void *p) {
return p;
}
#endif
namespace pxt {
template <typename T> inline const T &max(const T &a, const T &b) {
if (a < b)
return b;
return a;
}
template <typename T> inline const T &min(const T &a, const T &b) {
if (a < b)
return a;
return b;
}
template <typename T> inline void swap(T &a, T &b) {
T tmp = a;
a = b;
b = tmp;
}
//
// Tagged values (assume 4 bytes for now, Cortex-M0)
//
struct TValueStruct {};
typedef TValueStruct *TValue;
typedef TValue TNumber;
typedef TValue Action;
typedef TValue ImageLiteral;
// To be implemented by the target
extern "C" void target_panic(int error_code);
extern "C" void target_reset();
void sleep_ms(unsigned ms);
void sleep_us(uint64_t us);
void releaseFiber();
int current_time_ms();
void initRuntime();
void sendSerial(const char *data, int len);
int getSerialNumber();
void registerWithDal(int id, int event, Action a, int flags = 16); // EVENT_LISTENER_DEFAULT_FLAGS
void runInParallel(Action a);
void runForever(Action a);
void waitForEvent(int id, int event);
//%
unsigned afterProgramPage();
//%
void dumpDmesg();
// also defined DMESG macro
// end
#define TAGGED_SPECIAL(n) (TValue)(void *)((n << 2) | 2)
#define TAG_FALSE TAGGED_SPECIAL(2)
#define TAG_TRUE TAGGED_SPECIAL(16)
#define TAG_UNDEFINED (TValue)0
#define TAG_NULL TAGGED_SPECIAL(1)
#define TAG_NUMBER(n) (TNumber)(void *)((n << 1) | 1)
inline bool isTagged(TValue v) {
return ((intptr_t)v & 3) || !v;
}
inline bool isNumber(TValue v) {
return (intptr_t)v & 1;
}
inline bool isSpecial(TValue v) {
return (intptr_t)v & 2;
}
inline bool bothNumbers(TValue a, TValue b) {
return (intptr_t)a & (intptr_t)b & 1;
}
inline int numValue(TValue n) {
return (intptr_t)n >> 1;
}
#ifdef PXT_BOX_DEBUG
inline bool canBeTagged(int) {
return false;
}
#else
inline bool canBeTagged(int v) {
return (v << 1) >> 1 == v;
}
#endif
typedef enum {
ERR_INVALID_BINARY_HEADER = 5,
ERR_OUT_OF_BOUNDS = 8,
ERR_REF_DELETED = 7,
ERR_SIZE = 9,
} PXT_ERROR;
extern const unsigned functionsAndBytecode[];
extern TValue *globals;
extern uint16_t *bytecode;
class RefRecord;
// Utility functions
//%
TValue runAction3(Action a, TValue arg0, TValue arg1, TValue arg2);
//%
TValue runAction2(Action a, TValue arg0, TValue arg1);
//%
TValue runAction1(Action a, TValue arg0);
//%
TValue runAction0(Action a);
//%
Action mkAction(int reflen, int totallen, int startptr);
// allocate [sz] words and clear them
//%
unsigned *allocate(ramint_t sz);
//%
int templateHash();
//%
int programHash();
//%
unsigned programSize();
//%
int getNumGlobals();
//%
RefRecord *mkClassInstance(int vtableOffset);
//%
void debugMemLeaks();
//%
void anyPrint(TValue v);
int getConfig(int key, int defl = -1);
//%
int toInt(TNumber v);
//%
unsigned toUInt(TNumber v);
//%
double toDouble(TNumber v);
//%
float toFloat(TNumber v);
//%
TNumber fromDouble(double r);
//%
TNumber fromFloat(float r);
//%
TNumber fromInt(int v);
//%
TNumber fromUInt(unsigned v);
//%
TValue fromBool(bool v);
//%
bool eq_bool(TValue a, TValue b);
//%
bool eqq_bool(TValue a, TValue b);
void error(PXT_ERROR code, int subcode = 0);
void exec_binary(unsigned *pc);
void start();
struct HandlerBinding {
HandlerBinding *next;
int source;
int value;
Action action;
};
HandlerBinding *findBinding(int source, int value);
void setBinding(int source, int value, Action act);
// The standard calling convention is:
// - when a pointer is loaded from a local/global/field etc, and incr()ed
// (in other words, its presence on stack counts as a reference)
// - after a function call, all pointers are popped off the stack and decr()ed
// This does not apply to the RefRecord and st/ld(ref) methods - they unref()
// the RefRecord* this.
//%
TValue incr(TValue e);
//%
void decr(TValue e);
class RefObject;
static inline RefObject *incrRC(RefObject *r) {
return (RefObject *)incr((TValue)r);
}
static inline void decrRC(RefObject *r) {
decr((TValue)r);
}
inline void *ptrOfLiteral(int offset) {
return &bytecode[offset];
}
// Checks if object is ref-counted, and has a custom PXT vtable in front
// TODO
inline bool isRefCounted(TValue e) {
return !isTagged(e) && (*((unsigned *)e) & 1) == 1;
}
inline void check(int cond, PXT_ERROR code, int subcode = 0) {
if (!cond)
error(code, subcode);
}
inline void oops() {
target_panic(47);
}
class RefObject;
#ifdef PXT_MEMLEAK_DEBUG
extern std::set<TValue> allptrs;
#endif
typedef void (*RefObjectMethod)(RefObject *self);
typedef void *PVoid;
typedef void **PPVoid;
typedef void *Object_;
const PPVoid RefMapMarker = (PPVoid)(void *)43;
struct VTable {
uint16_t numbytes; // in the entire object, including the vtable pointer
uint16_t userdata;
PVoid *ifaceTable;
PVoid methods[2]; // we only use up to two methods here; pxt will generate more
// refmask sits at &methods[nummethods]
};
const int vtableShift = PXT_VTABLE_SHIFT;
// A base abstract class for ref-counted objects.
class RefObject {
public:
uint16_t refcnt;
uint16_t vtable;
RefObject(uint16_t vt) {
refcnt = 3;
vtable = vt;
#ifdef PXT_MEMLEAK_DEBUG
allptrs.insert((TValue)this);
#endif
}
void destroyVT();
void printVT();
// Call to disable pointer tracking on the current instance (in destructor or some other hack)
inline void untrack() {
#ifdef PXT_MEMLEAK_DEBUG
allptrs.erase((TValue)this);
#endif
}
inline bool isReadOnly() { return refcnt == 0xffff; }
// Increment/decrement the ref-count. Decrementing to zero deletes the current object.
inline void ref() {
if (isReadOnly())
return;
check(refcnt > 1, ERR_REF_DELETED);
// DMESG("INCR "); this->print();
refcnt += 2;
}
inline void unref() {
if (isReadOnly())
return;
check(refcnt > 1, ERR_REF_DELETED);
check((refcnt & 1), ERR_REF_DELETED);
// DMESG("DECR "); this->print();
refcnt -= 2;
if (refcnt == 1) {
untrack();
destroyVT();
}
}
};
class Segment {
private:
TValue *data;
ramint_t length;
ramint_t size;
// this just gives max value of ramint_t
static constexpr ramint_t MaxSize = (((1U << (8 * sizeof(ramint_t) - 1)) - 1) << 1) + 1;
static constexpr TValue DefaultValue = TAG_UNDEFINED;
static ramint_t growthFactor(ramint_t size);
void growByMin(ramint_t minSize);
void growBy(ramint_t newSize);
void ensure(ramint_t newSize);
public:
Segment() : data(nullptr), length(0), size(0){};
TValue get(unsigned i);
void set(unsigned i, TValue value);
void setRef(unsigned i, TValue value);
unsigned getLength() { return length; };
void setLength(unsigned newLength);
void resize(unsigned newLength) { setLength(newLength); }
void push(TValue value);
TValue pop();
TValue remove(unsigned i);
void insert(unsigned i, TValue value);
bool isValidIndex(unsigned i);
void destroy();
void print();
};
// A ref-counted collection of either primitive or ref-counted objects (String, Image,
// user-defined record, another collection)
class RefCollection : public RefObject {
private:
Segment head;
public:
RefCollection();
static void destroy(RefCollection *coll);
static void print(RefCollection *coll);
unsigned length() { return head.getLength(); }
void setLength(unsigned newLength) { head.setLength(newLength); }
void push(TValue x);
TValue pop();
TValue getAt(int i);
void setAt(int i, TValue x);
// removes the element at index i and shifts the other elements left
TValue removeAt(int i);
// inserts the element at index i and moves the other elements right.
void insertAt(int i, TValue x);
int indexOf(TValue x, int start);
bool removeElement(TValue x);
};
class RefMap : public RefObject {
public:
Segment keys;
Segment values;
RefMap();
static void destroy(RefMap *map);
static void print(RefMap *map);
int findIdx(unsigned key);
};
// A ref-counted, user-defined JS object.
class RefRecord : public RefObject {
public:
// The object is allocated, so that there is space at the end for the fields.
TValue fields[];
RefRecord(uint16_t v) : RefObject(v) {}
TValue ld(int idx);
TValue ldref(int idx);
void st(int idx, TValue v);
void stref(int idx, TValue v);
};
//%
VTable *getVTable(RefObject *r);
// these are needed when constructing vtables for user-defined classes
//%
void RefRecord_destroy(RefRecord *r);
//%
void RefRecord_print(RefRecord *r);
class RefAction;
typedef TValue (*ActionCB)(TValue *captured, TValue arg0, TValue arg1, TValue arg2);
// Ref-counted function pointer.
class RefAction : public RefObject {
public:
// This is the same as for RefRecord.
uint8_t len;
uint8_t reflen;
ActionCB func; // The function pointer
// fields[] contain captured locals
TValue fields[];
static void destroy(RefAction *act);
static void print(RefAction *act);
RefAction();
inline void stCore(int idx, TValue v) {
// DMESG("ST [%d] = %d ", idx, v); this->print();
intcheck(0 <= idx && idx < len, ERR_OUT_OF_BOUNDS, 10);
intcheck(fields[idx] == 0, ERR_OUT_OF_BOUNDS, 11); // only one assignment permitted
fields[idx] = v;
}
inline TValue runCore(TValue arg0, TValue arg1,
TValue arg2) // internal; use runAction*() functions
{
this->ref();
TValue r = this->func(&this->fields[0], arg0, arg1, arg2);
this->unref();
return r;
}
};
// These two are used to represent locals written from inside inline functions
class RefLocal : public RefObject {
public:
TValue v;
static void destroy(RefLocal *l);
static void print(RefLocal *l);
RefLocal();
};
class RefRefLocal : public RefObject {
public:
TValue v;
static void destroy(RefRefLocal *l);
static void print(RefRefLocal *l);
RefRefLocal();
};
typedef int color;
// note: this is hardcoded in PXT (hexfile.ts)
#define PXT_REF_TAG_STRING 1
#define PXT_REF_TAG_BUFFER 2
#define PXT_REF_TAG_IMAGE 3
#define PXT_REF_TAG_NUMBER 32
#define PXT_REF_TAG_ACTION 33
class BoxedNumber : public RefObject {
public:
double num;
BoxedNumber() : RefObject(PXT_REF_TAG_NUMBER) {}
} __attribute__((packed));
class BoxedString : public RefObject {
public:
uint16_t length;
char data[0];
BoxedString() : RefObject(PXT_REF_TAG_STRING) {}
};
class BoxedBuffer : public RefObject {
public:
// data needs to be word-aligned, so we use 32 bits for length
int length;
uint8_t data[0];
BoxedBuffer() : RefObject(PXT_REF_TAG_BUFFER) {}
};
// the first byte of data indicates the format - currently 0xE1 or 0xE4 to 1 or 4 bit bitmaps
// second byte indicates width in pixels
// third byte indicates the height (which should also match the size of the buffer)
// just like ordinary buffers, these can be layed out in flash
class RefImage : public RefObject {
uintptr_t _buffer;
uint8_t _data[0];
public:
RefImage(BoxedBuffer *buf);
RefImage(uint32_t sz);
bool hasBuffer() { return !(_buffer & 1); }
BoxedBuffer *buffer() { return hasBuffer() ? (BoxedBuffer *)_buffer : NULL; }
void setBuffer(BoxedBuffer *b);
bool isDirty() { return (_buffer & 3) == 3; }
void clearDirty() { if (isDirty()) _buffer &= ~2; }
uint8_t *data() { return hasBuffer() ? buffer()->data : _data; }
int length() { return hasBuffer() ? buffer()->length : (_buffer >> 2); }
int pixLength() { return length() - 4; }
int height();
int width();
int byteHeight();
int wordHeight();
int bpp();
bool hasPadding() { return (height() & 0x1f) != 0; }
uint8_t *pix() { return data() + 4; }
uint8_t *pix(int x, int y);
uint8_t fillMask(color c);
bool inRange(int x, int y);
void clamp(int *x, int *y);
void makeWritable();
static void destroy(RefImage *t);
static void print(RefImage *t);
};
RefImage *mkImage(int w, int h, int bpp);
typedef BoxedBuffer *Buffer;
typedef BoxedString *String;
typedef RefImage *Image_;
// keep in sync with github/pxt/pxtsim/libgeneric.ts
enum class NumberFormat {
Int8LE = 1,
UInt8LE,
Int16LE,
UInt16LE,
Int32LE,
Int8BE,
UInt8BE,
Int16BE,
UInt16BE,
Int32BE,
UInt32LE,
UInt32BE,
Float32LE,
Float64LE,
Float32BE,
Float64BE,
};
// data can be NULL in both cases
String mkString(const char *data, int len = -1);
Buffer mkBuffer(const uint8_t *data, int len);
TNumber getNumberCore(uint8_t *buf, int size, NumberFormat format);
void setNumberCore(uint8_t *buf, int size, NumberFormat format, TNumber value);
TNumber mkNaN();
void seedRandom(unsigned seed);
// max is inclusive
unsigned getRandom(unsigned max);
extern const VTable string_vt;
extern const VTable image_vt;
extern const VTable buffer_vt;
extern const VTable number_vt;
extern const VTable RefAction_vtable;
enum class ValType {
Undefined,
Boolean,
Number,
String,
Object,
Function,
};
ValType valType(TValue v);
} // namespace pxt
#define PXT_DEF_STRING(name, val) \
static const char name[] __attribute__((aligned(4))) = "\xff\xff\x01\x00" val;
using namespace pxt;
namespace pins {
Buffer createBuffer(int size);
}
namespace String_ {
int compare(String s, String that);
}
// The ARM Thumb generator in the JavaScript code is parsing
// the hex file and looks for the magic numbers as present here.
//
// Then it fetches function pointer addresses from there.
//
// The vtable pointers are there, so that the ::emptyData for various types
// can be patched with the right vtable.
//
#define PXT_SHIMS_BEGIN \
namespace pxt { \
const unsigned functionsAndBytecode[] \
__attribute__((aligned(0x20))) = {0x08010801, 0x42424242, 0x08010801, 0x8de9d83e,
#define PXT_SHIMS_END \
} \
; \
}
#ifndef X86_64
#pragma GCC diagnostic ignored "-Wpmf-conversions"
#endif
#define PXT_VTABLE_TO_INT(vt) ((uintptr_t)(vt) >> vtableShift)
#define PXT_VTABLE_BEGIN(classname, flags, iface) \
const VTable classname##_vtable __attribute__((aligned(1 << vtableShift))) = { \
sizeof(classname), flags, iface, {(void *)&classname::destroy, (void *)&classname::print,
#define PXT_VTABLE_END \
} \
} \
;
#define PXT_VTABLE_INIT(classname) RefObject(PXT_VTABLE_TO_INT(&classname##_vtable))
#define PXT_VTABLE_CTOR(classname) \
PXT_VTABLE_BEGIN(classname, 0, 0) \
PXT_VTABLE_END classname::classname() : PXT_VTABLE_INIT(classname)
#define PXT_MAIN \
int main() { \
pxt::start(); \
return 0; \
}
#define PXT_FNPTR(x) (unsigned)(void *)(x)
#define PXT_ABI(...)
#define JOIN(a, b) a##b
/// Defines getClassName() function to fetch the singleton
#define SINGLETON(ClassName) \
static ClassName *JOIN(inst, ClassName); \
ClassName *JOIN(get, ClassName)() { \
if (!JOIN(inst, ClassName)) \
JOIN(inst, ClassName) = new ClassName(); \
return JOIN(inst, ClassName); \
}
#endif