pxt-calliope/libs/microbit/core.cpp
2016-04-02 20:35:22 -07:00

399 lines
8.4 KiB
C++

#include "ksbit.h"
#include <limits.h>
namespace StringMethods {
/**
* Returns the character at the specified index.
* @param pos The zero-based index of the desired character.
*/
//%
StringData *charAt(StringData *s, int pos) {
return ManagedString((char)ManagedString(s).charAt(pos)).leakData();
}
/**
* Returns the Unicode value of the character at the specified location.
* @param index The zero-based index of the desired character. If there is no character at the specified index, NaN is returned.
*/
//%
int charCodeAt(StringData *s, int index) {
return ManagedString(s).charAt(index);
}
/**
* Returns a string that contains the concatenation of two or more strings.
* @param other The string to append to the end of the string.
*/
//%
StringData *concat(StringData *s, StringData *other) {
ManagedString a(s), b(other);
return (a + b).leakData();
}
/**
* Determines whether relative order of two strings (in ASCII encoding).
* @param that String to compare to target string
*/
//%
int compare(StringData *s, StringData *that) {
return strcmp(s->data, that->data);
}
/** Returns the length of a String object. */
//% property
int length(StringData *s) {
return s->len;
}
}
namespace BooleanMethods {
// Cache the string literals "true" and "false" when used.
// Note that the representation of booleans stays the usual C-one.
static const char sTrue[] __attribute__ ((aligned (4))) = "\xff\xff\x04\x00" "true\0";
static const char sFalse[] __attribute__ ((aligned (4))) = "\xff\xff\x05\x00" "false\0";
/**
* Returns a string representation of an object.
*/
//%
StringData* toString(bool v)
{
if (v) {
return (StringData*)(void*)sTrue;
} else {
return (StringData*)(void*)sFalse;
}
}
//%
bool bang(bool v) { return !v; }
}
namespace String_ {
/**
* Make a string from the given ASCII character code.
*/
//%
StringData *fromCharCode(int code)
{
return ManagedString((char)code).leakData();
}
//%
int toNumber(StringData *s) {
return atoi(s->data);
}
//%
StringData *mkEmpty()
{
return ManagedString::EmptyString.leakData();
}
}
namespace NumberMethods {
/**
* Returns a string representation of a number.
*/
//%
StringData* toString(int n)
{
return ManagedString(n).leakData();
}
}
namespace NumberImpl {
// +, - and friends are handled directly by assembly instructions
// The comparisons are here as they are more code-size efficient
//%
bool lt(int x, int y) { return x < y; }
//%
bool le(int x, int y) { return x <= y; }
//%
bool neq(int x, int y) { return x != y; }
//%
bool eq(int x, int y) { return x == y; }
//%
bool gt(int x, int y) { return x > y; }
//%
bool ge(int x, int y) { return x >= y; }
// These in fact call into C runtime on Cortex-M0
//%
int div(int x, int y) { return x / y; }
//%
int mod(int x, int y) { return x % y; }
}
namespace Math_ {
/**
* Returns the value of a base expression taken to a specified power.
* @param x The base value of the expression.
* @param y The exponent value of the expression.
*/
//%
int pow(int x, int y)
{
if (y < 0)
return 0;
int r = 1;
while (y) {
if (y & 1)
r *= x;
y >>= 1;
x *= x;
}
return r;
}
/**
* Returns a pseudorandom number between 0 and `max`.
*/
//%
int random(int max) {
if (max == INT_MIN)
return -uBit.random(INT_MAX);
else if (max < 0)
return -uBit.random(-max);
else if (max == 0)
return 0;
else
return uBit.random(max);
}
/**
* Returns the square root of a number.
* @param x A numeric expression.
*/
//%
int sqrt(int x)
{
return ::sqrt(x);
}
}
namespace ArrayImpl {
//%
RefCollection *mk(uint32_t flags)
{
return new RefCollection(flags);
}
//%
int length(RefCollection *c) { return c->length(); }
//%
void push(RefCollection *c, uint32_t x) { c->push(x); }
//%
uint32_t getAt(RefCollection *c, int x) { return c->getAt(x); }
//%
void removeAt(RefCollection *c, int x) { c->removeAt(x); }
//%
void setAt(RefCollection *c, int x, uint32_t y) { c->setAt(x, y); }
//%
int indexOf(RefCollection *c, uint32_t x, int start) { return c->indexOf(x, start); }
//%
int removeElement(RefCollection *c, uint32_t x) { return c->removeElement(x); }
}
// Import some stuff directly
namespace kindscript {
//%
void registerWithDal(int id, int event, Action a);
//%
void runAction0(Action a);
//%
void runAction1(Action a, int arg);
//%
Action mkAction(int reflen, int totallen, int startptr);
//%
RefRecord* mkRecord(int reflen, int totallen);
//%
void debugMemLeaks();
//%
int incr(uint32_t e);
//%
void decr(uint32_t e);
//%
uint32_t *allocate(uint16_t sz);
//%
int templateHash();
//%
int programHash();
//%
void *ptrOfLiteral(int offset);
}
namespace ksrt {
//%
uint32_t ldloc(RefLocal *r) {
return r->v;
}
//%
uint32_t ldlocRef(RefRefLocal *r) {
uint32_t tmp = r->v;
incr(tmp);
return tmp;
}
//%
void stloc(RefLocal *r, uint32_t v) {
r->v = v;
}
//%
void stlocRef(RefRefLocal *r, uint32_t v) {
decr(r->v);
r->v = v;
}
//%
RefLocal *mkloc() {
return new RefLocal();
}
//%
RefRefLocal *mklocRef() {
return new RefRefLocal();
}
// All of the functions below unref() self. This is for performance reasons -
// the code emitter will not emit the unrefs for them.
//%
uint32_t ldfld(RefRecord *r, int idx) {
auto tmp = r->ld(idx);
r->unref();
return tmp;
}
//%
uint32_t ldfldRef(RefRecord *r, int idx) {
auto tmp = r->ldref(idx);
r->unref();
return tmp;
}
//%
void stfld(RefRecord *r, int idx, uint32_t val) {
r->st(idx, val);
r->unref();
}
//%
void stfldRef(RefRecord *r, int idx, uint32_t val) {
r->stref(idx, val);
r->unref();
}
//%
uint32_t ldglb(int idx) {
check(0 <= idx && idx < numGlobals, ERR_OUT_OF_BOUNDS, 7);
return globals[idx];
}
//%
uint32_t ldglbRef(int idx) {
check(0 <= idx && idx < numGlobals, ERR_OUT_OF_BOUNDS, 7);
uint32_t tmp = globals[idx];
incr(tmp);
return tmp;
}
// note the idx comes last - it's more convenient that way in the emitter
//%
void stglb(uint32_t v, int idx)
{
check(0 <= idx && idx < numGlobals, ERR_OUT_OF_BOUNDS, 7);
globals[idx] = v;
}
//%
void stglbRef(uint32_t v, int idx)
{
check(0 <= idx && idx < numGlobals, ERR_OUT_OF_BOUNDS, 7);
decr(globals[idx]);
globals[idx] = v;
}
// Store a captured local in a closure. It returns the action, so it can be chained.
//%
RefAction *stclo(RefAction *a, int idx, uint32_t v)
{
//DBG("STCLO "); a->print(); DBG("@%d = %p\n", idx, (void*)v);
a->st(idx, v);
return a;
}
//%
void panic(int code)
{
uBit.panic(code);
}
}
namespace buffer {
RefBuffer *mk(uint32_t size)
{
RefBuffer *r = new RefBuffer();
r->data.resize(size);
return r;
}
char *cptr(RefBuffer *c)
{
return (char*)&c->data[0];
}
int count(RefBuffer *c) { return c->data.size(); }
void fill(RefBuffer *c, int v)
{
memset(cptr(c), v, count(c));
}
void fill_random(RefBuffer *c)
{
int len = count(c);
for (int i = 0; i < len; ++i)
c->data[i] = uBit.random(0x100);
}
void add(RefBuffer *c, uint32_t x) {
c->data.push_back(x);
}
inline bool in_range(RefBuffer *c, int x) {
return (0 <= x && x < (int)c->data.size());
}
uint32_t at(RefBuffer *c, int x) {
if (in_range(c, x)) {
return c->data[x];
}
else {
error(ERR_OUT_OF_BOUNDS);
return 0;
}
}
void set(RefBuffer *c, int x, uint32_t y) {
if (!in_range(c, x))
return;
c->data[x] = y;
}
}
namespace bitvm_bits {
RefBuffer *create_buffer(int size)
{
return buffer::mk(size);
}
}