pxt-calliope/libs/core/pins.cpp
Amerlander 9528f73140
Beta updates (#117)
* fixes for beta

- hide blocks without function
- digital Pin selection bring P0 in first position
- add compass block to end confusion about "basic.showArrow(ArrowNames.North)"
- add approved repos
- add and sort preffered repos
- add prefferedPackages
- disable webUSB
- disable parts
- remove mobileSafariDownloadProtocol
- update socialOptions

* remove `preferredPackages` from `pxtarget`

* Beta updates

- removed robobit extension
- updated docs menu
- added about.md
- added arrow icons
- removed show arrow block

* Beta Update

- replace webUSb Images
- update extension list
- hide II2C Pins from digitalPins
- move compile service repos back to calliope

* replace extension images

* Beta update

- change extension upload button style
- deprecate arrow blocks

Co-authored-by: Juri <gitkraken@juriwolf.de>
2020-09-15 09:10:07 -07:00

543 lines
19 KiB
C++

#include "pxt.h"
enum class DigitalPin {
P0 = MICROBIT_ID_IO_P12, // edge connector 0
P1 = MICROBIT_ID_IO_P0, // edge connector 1
P2 = MICROBIT_ID_IO_P1, // edge connector 2
P3 = MICROBIT_ID_IO_P16, // edge connector 3
C4 = MICROBIT_ID_IO_P3, // LED matrix C1
C5 = MICROBIT_ID_IO_P4, // LED matrix C2
C6 = MICROBIT_ID_IO_P10, // LED matrix C3
C7 = MICROBIT_ID_IO_P13, // LED matrix C4
C8 = MICROBIT_ID_IO_P14, // LED matrix C5
C9 = MICROBIT_ID_IO_P15, // LED matrix C6
C10 = MICROBIT_ID_IO_P9, // LED matrix C7
C11 = MICROBIT_ID_IO_P7, // LED matrix C8
C12 = MICROBIT_ID_IO_P6, // LED matrix C9
C16 = MICROBIT_ID_IO_P2, // RX
C17 = MICROBIT_ID_IO_P8 // TX
};
enum class AnalogPin {
P1 = MICROBIT_ID_IO_P0, // edge connector 1
P2 = MICROBIT_ID_IO_P1, // edge connector 2
C4 = MICROBIT_ID_IO_P3, // LED matrix C1
C5 = MICROBIT_ID_IO_P4, // LED matrix C2
C6 = MICROBIT_ID_IO_P10, // LED matrix C3
C16 = MICROBIT_ID_IO_P2, // RX
C17 = MICROBIT_ID_IO_P8, // TX
MIC = MICROBIT_ID_IO_P21 // microphone
};
enum class PulseValue {
//% block=high
High = MICROBIT_PIN_EVT_PULSE_HI,
//% block=low
Low = MICROBIT_PIN_EVT_PULSE_LO
};
enum class PinPullMode {
//% block="down"
PullDown = 0,
//% block="up"
PullUp = 1,
//% block="none"
PullNone = 2
};
enum class PinEventType {
//% block="edge"
Edge = MICROBIT_PIN_EVENT_ON_EDGE,
//% block="pulse"
Pulse = MICROBIT_PIN_EVENT_ON_PULSE,
//% block="touch"
Touch = MICROBIT_PIN_EVENT_ON_TOUCH,
//% block="none"
None = MICROBIT_PIN_EVENT_NONE
};
namespace pxt
{
MicroBitPin *getPin(int id) {
switch (id) {
case MICROBIT_ID_IO_P0: return &uBit.io.P0;
case MICROBIT_ID_IO_P1: return &uBit.io.P1;
case MICROBIT_ID_IO_P2: return &uBit.io.P2;
case MICROBIT_ID_IO_P3: return &uBit.io.P3;
case MICROBIT_ID_IO_P4: return &uBit.io.P4;
case MICROBIT_ID_IO_P5: return &uBit.io.P5;
case MICROBIT_ID_IO_P6: return &uBit.io.P6;
case MICROBIT_ID_IO_P7: return &uBit.io.P7;
case MICROBIT_ID_IO_P8: return &uBit.io.P8;
case MICROBIT_ID_IO_P9: return &uBit.io.P9;
case MICROBIT_ID_IO_P10: return &uBit.io.P10;
case MICROBIT_ID_IO_P11: return &uBit.io.P11;
case MICROBIT_ID_IO_P12: return &uBit.io.P12;
case MICROBIT_ID_IO_P13: return &uBit.io.P13;
case MICROBIT_ID_IO_P14: return &uBit.io.P14;
case MICROBIT_ID_IO_P15: return &uBit.io.P15;
case MICROBIT_ID_IO_P16: return &uBit.io.P16;
case MICROBIT_ID_IO_P19: return &uBit.io.P19;
case MICROBIT_ID_IO_P20: return &uBit.io.P20;
case MICROBIT_ID_IO_P21: return &uBit.io.P21;
#if MICROBIT_CODAL
case 1001: return &uBit.io.usbTx;
case 1002: return &uBit.io.usbRx;
#endif
default: return NULL;
}
}
} // pxt
namespace pins {
#define PINOP(op) \
MicroBitPin *pin = getPin((int)name); \
if (!pin) return; \
pin->op
#define PINREAD(op) \
MicroBitPin *pin = getPin((int)name); \
if (!pin) return 0; \
return pin->op
//%
MicroBitPin *getPinAddress(int id) {
return getPin(id);
}
/**
* Read the specified pin or connector as either 0 or 1
* @param name pin to read from, eg: DigitalPin.P0
*/
//% help=pins/digital-read-pin weight=30
//% blockId=device_get_digital_pin block="digital read|pin %name" blockGap=8
//% name.fieldEditor="gridpicker" name.fieldOptions.columns=4
//% name.fieldOptions.tooltips="false" name.fieldOptions.width="250"
int digitalReadPin(DigitalPin name) {
PINREAD(getDigitalValue());
}
/**
* Set a pin or connector value to either 0 or 1.
* @param name pin to write to, eg: DigitalPin.P0
* @param value value to set on the pin, 1 eg,0
*/
//% help=pins/digital-write-pin weight=29
//% blockId=device_set_digital_pin block="digital write|pin %name|to %value"
//% value.min=0 value.max=1
//% name.fieldEditor="gridpicker" name.fieldOptions.columns=4
//% name.fieldOptions.tooltips="false" name.fieldOptions.width="250"
void digitalWritePin(DigitalPin name, int value) {
PINOP(setDigitalValue(value));
}
/**
* Read the connector value as analog, that is, as a value comprised between 0 and 1023.
* @param name pin to write to, eg: AnalogPin.P1
*/
//% help=pins/analog-read-pin weight=25
//% blockId=device_get_analog_pin block="analog read|pin %name" blockGap="8"
//% name.fieldEditor="gridpicker" name.fieldOptions.columns=4
//% name.fieldOptions.tooltips="false" name.fieldOptions.width="250"
int analogReadPin(AnalogPin name) {
PINREAD(getAnalogValue());
}
/**
* Set the connector value as analog. Value must be comprised between 0 and 1023.
* @param name pin name to write to, eg: AnalogPin.P1
* @param value value to write to the pin between ``0`` and ``1023``. eg:1023,0
*/
//% help=pins/analog-write-pin weight=24
//% blockId=device_set_analog_pin block="analog write|pin %name|to %value" blockGap=8
//% value.min=0 value.max=1023
//% name.fieldEditor="gridpicker" name.fieldOptions.columns=4
//% name.fieldOptions.tooltips="false" name.fieldOptions.width="250"
void analogWritePin(AnalogPin name, int value) {
PINOP(setAnalogValue(value));
}
/**
* Configure the pulse-width modulation (PWM) period of the analog output in microseconds.
* If this pin is not configured as an analog output (using `analog write pin`), the operation has no effect.
* @param name analog pin to set period to, eg: AnalogPin.P1
* @param micros period in micro seconds. eg:20000
*/
//% help=pins/analog-set-period weight=23 blockGap=8
//% blockId=device_set_analog_period block="analog set period|pin %pin|to (µs)%micros"
//% pin.fieldEditor="gridpicker" pin.fieldOptions.columns=4
//% pin.fieldOptions.tooltips="false"
void analogSetPeriod(AnalogPin name, int micros) {
PINOP(setAnalogPeriodUs(micros));
}
/**
* Configure the pin as a digital input and generate an event when the pin is pulsed either high or low.
* @param name digital pin to register to, eg: DigitalPin.P0
* @param pulse the value of the pulse, eg: PulseValue.High
*/
//% help=pins/on-pulsed weight=22 blockGap=16 advanced=true
//% blockId=pins_on_pulsed block="on|pin %pin|pulsed %pulse"
//% pin.fieldEditor="gridpicker" pin.fieldOptions.columns=4
//% pin.fieldOptions.tooltips="false" pin.fieldOptions.width="250"
void onPulsed(DigitalPin name, PulseValue pulse, Action body) {
MicroBitPin* pin = getPin((int)name);
if (!pin) return;
pin->eventOn(MICROBIT_PIN_EVENT_ON_PULSE);
registerWithDal((int)name, (int)pulse, body);
}
/**
* Get the duration of the last pulse in microseconds. This function should be called from a ``onPulsed`` handler.
*/
//% help=pins/pulse-duration advanced=true
//% blockId=pins_pulse_duration block="pulse duration (µs)"
//% weight=21 blockGap=8
int pulseDuration() {
return pxt::lastEvent.timestamp;
}
/**
* Return the duration of a pulse at a pin in microseconds.
* @param name the pin which measures the pulse, eg: DigitalPin.P0
* @param value the value of the pulse, eg: PulseValue.High
* @param maximum duration in microseconds
*/
//% blockId="pins_pulse_in" block="pulse in (µs)|pin %name|pulsed %value"
//% weight=20 advanced=true
//% help=pins/pulse-in
//% name.fieldEditor="gridpicker" name.fieldOptions.columns=4
//% name.fieldOptions.tooltips="false" name.fieldOptions.width="250"
int pulseIn(DigitalPin name, PulseValue value, int maxDuration = 2000000) {
MicroBitPin* pin = getPin((int)name);
if (!pin) return 0;
int pulse = value == PulseValue::High ? 1 : 0;
uint64_t tick = system_timer_current_time_us();
uint64_t maxd = (uint64_t)maxDuration;
while(pin->getDigitalValue() != pulse) {
if(system_timer_current_time_us() - tick > maxd)
return 0;
}
uint64_t start = system_timer_current_time_us();
while(pin->getDigitalValue() == pulse) {
if(system_timer_current_time_us() - tick > maxd)
return 0;
}
uint64_t end = system_timer_current_time_us();
return end - start;
}
// TODO FIX THIS IN THE DAL!
inline void fixMotorIssue(AnalogPin name) {
NRF_TIMER2->SHORTS = TIMER_SHORTS_COMPARE3_CLEAR_Msk;
NRF_TIMER2->INTENCLR = TIMER_INTENCLR_COMPARE3_Msk;
NRF_TIMER2->PRESCALER = 4;
NRF_TIMER2->CC[3] = 20000;
NRF_TIMER2->TASKS_START = 1;
NRF_TIMER2->EVENTS_COMPARE[3] = 0;
PINOP(getDigitalValue());
}
/**
* Write a value to the servo, controlling the shaft accordingly. On a standard servo, this will set the angle of the shaft (in degrees), moving the shaft to that orientation. On a continuous rotation servo, this will set the speed of the servo (with ``0`` being full-speed in one direction, ``180`` being full speed in the other, and a value near ``90`` being no movement).
* @param name pin to write to, eg: AnalogPin.P1
* @param value angle or rotation speed, eg:180,90,0
*/
//% help=pins/servo-write-pin weight=20
//% blockId=device_set_servo_pin block="servo write|pin %name|to %value" blockGap=8
//% parts=microservo trackArgs=0
//% value.min=0 value.max=180
//% name.fieldEditor="gridpicker" name.fieldOptions.columns=4
//% name.fieldOptions.tooltips="false" name.fieldOptions.width="250"
void servoWritePin(AnalogPin name, int value) {
fixMotorIssue(name);
PINOP(setServoValue(value));
}
/**
* Specifies that a continuous servo is connected.
*/
//%
void servoSetContinuous(AnalogPin name, bool value) {
// handled in simulator
}
/**
* Configure the IO pin as an analog/pwm output and set a pulse width. The period is 20 ms period and the pulse width is set based on the value given in **microseconds** or `1/1000` milliseconds.
* @param name pin name
* @param micros pulse duration in micro seconds, eg:1500
*/
//% help=pins/servo-set-pulse weight=19
//% blockId=device_set_servo_pulse block="servo set pulse|pin %value|to (µs) %micros"
//% value.fieldEditor="gridpicker" value.fieldOptions.columns=4
//% value.fieldOptions.tooltips="false" value.fieldOptions.width="250"
void servoSetPulse(AnalogPin name, int micros) {
fixMotorIssue(name);
PINOP(setServoPulseUs(micros));
}
MicroBitPin* pitchPin = NULL;
MicroBitPin* pitchPin2 = NULL;
uint8_t pitchVolume = 0xff;
/**
* Set the pin used when using analog pitch or music.
* @param name pin to modulate pitch from
*/
//% blockId=device_analog_set_pitch_pin block="analog set pitch pin %name"
//% help=pins/analog-set-pitch-pin weight=3 advanced=true
//% name.fieldEditor="gridpicker" name.fieldOptions.columns=4
//% name.fieldOptions.tooltips="false" name.fieldOptions.width="250"
void analogSetPitchPin(AnalogPin name) {
pitchPin = getPin((int)name);
pitchPin2 = NULL;
}
void pinAnalogSetPitch(MicroBitPin* pin, int frequency, int ms) {
if (frequency <= 0 || pitchVolume == 0) {
pin->setAnalogValue(0);
} else {
int v = 1 << (pitchVolume >> 5);
pin->setAnalogValue(v);
pin->setAnalogPeriodUs(1000000/frequency);
}
}
/**
* Sets the volume on the pitch pin
* @param volume the intensity of the sound from 0..255
*/
//% blockId=device_analog_set_pitch_volume block="analog set pitch volume $volume"
//% help=pins/analog-set-pitch-volume weight=3 advanced=true
//% volume.min=0 volume.max=255
void analogSetPitchVolume(int volume) {
pitchVolume = max(0, min(0xff, volume));
}
/**
* Gets the volume the pitch pin from 0..255
*/
//% blockId=device_analog_pitch_volume block="analog pitch volume"
//% help=pins/analog-pitch-volume weight=3 advanced=true
int analogPitchVolume() {
return pitchVolume;
}
/**
* Emit a plse-width modulation (PWM) signal to the current pitch pin. Use `analog set pitch pin` to define the pitch pin.
* @param frequency frequency to modulate in Hz.
* @param ms duration of the pitch in milli seconds.
*/
//% blockId=device_analog_pitch block="analog pitch %frequency|for (ms) %ms"
//% help=pins/analog-pitch weight=4 async advanced=true blockGap=8
void analogPitch(int frequency, int ms) {
// init pins if needed
if (NULL == pitchPin) {
pitchPin = getPin((int)DigitalPin::P1);
#ifdef SOUND_MIRROR_EXTENSION
pitchPin2 = &SOUND_MIRROR_EXTENSION;
#endif
}
// set pitch
if (NULL != pitchPin)
pinAnalogSetPitch(pitchPin, frequency, ms);
if (NULL != pitchPin2)
pinAnalogSetPitch(pitchPin2, frequency, ms);
// clear pitch
if (ms > 0) {
fiber_sleep(ms);
if (NULL != pitchPin)
pitchPin->setAnalogValue(0);
if (NULL != pitchPin2)
pitchPin2->setAnalogValue(0);
fiber_sleep(5);
}
}
/**
* Configure the pull directiion of of a pin.
* @param name pin to set the pull mode on, eg: DigitalPin.P0
* @param pull one of the mbed pull configurations, eg: PinPullMode.PullUp
*/
//% help=pins/set-pull weight=3 advanced=true
//% blockId=device_set_pull block="set pull|pin %pin|to %pull"
//% pin.fieldEditor="gridpicker" pin.fieldOptions.columns=4
//% pin.fieldOptions.tooltips="false" pin.fieldOptions.width="250"
void setPull(DigitalPin name, PinPullMode pull) {
#if MICROBIT_CODAL
codal::PullMode m = pull == PinPullMode::PullDown
? codal::PullMode::Down
: pull == PinPullMode::PullUp ? codal::PullMode::Up
: codal::PullMode::None;
PINOP(setPull(m));
#else
PinMode m = pull == PinPullMode::PullDown
? PinMode::PullDown
: pull == PinPullMode::PullUp ? PinMode::PullUp
: PinMode::PullNone;
PINOP(setPull(m));
#endif
}
/**
* Configure the events emitted by this pin. Events can be subscribed to
* using ``control.onEvent()``.
* @param name pin to set the event mode on, eg: DigitalPin.P0
* @param type the type of events for this pin to emit, eg: PinEventType.Edge
*/
//% help=pins/set-events weight=4 advanced=true
//% blockId=device_set_pin_events block="set pin %pin|to emit %type|events"
//% pin.fieldEditor="gridpicker" pin.fieldOptions.columns=4
//% pin.fieldOptions.tooltips="false" pin.fieldOptions.width="250"
void setEvents(DigitalPin name, PinEventType type) {
getPin((int)name)->eventOn((int)type);
}
/**
* Create a new zero-initialized buffer.
* @param size number of bytes in the buffer
*/
//%
Buffer createBuffer(int size)
{
return mkBuffer(NULL, size);
}
#if MICROBIT_CODAL
#define BUFFER_TYPE uint8_t*
#else
#define BUFFER_TYPE char*
#endif
/**
* Read `size` bytes from a 7-bit I2C `address`.
*/
//%
Buffer i2cReadBuffer(int address, int size, bool repeat = false)
{
Buffer buf = createBuffer(size);
uBit.i2c.read(address << 1, (BUFFER_TYPE)buf->data, size, repeat);
return buf;
}
/**
* Write bytes to a 7-bit I2C `address`.
*/
//%
int i2cWriteBuffer(int address, Buffer buf, bool repeat = false)
{
return uBit.i2c.write(address << 1, (BUFFER_TYPE)buf->data, buf->length, repeat);
}
SPI* spi = NULL;
SPI* allocSPI() {
if (NULL == spi)
spi = new SPI(MOSI, MISO, SCK);
return spi;
}
/**
* Write to the SPI slave and return the response
* @param value Data to be sent to the SPI slave
*/
//% help=pins/spi-write weight=5 advanced=true
//% blockId=spi_write block="spi write %value"
int spiWrite(int value) {
auto p = allocSPI();
return p->write(value);
}
/**
* Write to and read from the SPI slave at the same time
* @param command Data to be sent to the SPI slave (can be null)
* @param response Data received from the SPI slave (can be null)
*/
//% help=pins/spi-transfer argsNullable
void spiTransfer(Buffer command, Buffer response) {
if (!command && !response)
target_panic(PANIC_INVALID_ARGUMENT);
if (command && response && command->length != response->length)
target_panic(PANIC_INVALID_ARGUMENT);
auto p = allocSPI();
unsigned len = command ? command->length : response->length;
#if MICROBIT_CODAL
p->transfer(command ? command->data : NULL, command ? len : 0,
response ? response->data : NULL, response ? len : 0);
#else
for (unsigned i = 0; i < len; ++i) {
int v = p->write(command ? command->data[i] : 0);
if (response) response->data[i] = v;
}
#endif
}
/**
* Set the SPI frequency
* @param frequency the clock frequency, eg: 1000000
*/
//% help=pins/spi-frequency weight=4 advanced=true
//% blockId=spi_frequency block="spi frequency %frequency"
void spiFrequency(int frequency) {
auto p = allocSPI();
p->frequency(frequency);
}
/**
* Set the SPI bits and mode
* @param bits the number of bits, eg: 8
* @param mode the mode, eg: 3
*/
//% help=pins/spi-format weight=3 advanced=true
//% blockId=spi_format block="spi format|bits %bits|mode %mode"
void spiFormat(int bits, int mode) {
auto p = allocSPI();
p->format(bits, mode);
}
#if MICROBIT_CODAL
#define PIN_ARG(pin) *(getPin((int)(pin)))
#else
#define PIN_ARG(pin) (getPin((int)(pin)))->name
#endif
/**
* Set the MOSI, MISO, SCK pins used by the SPI connection
*
*/
//% help=pins/spi-pins weight=2 advanced=true
//% blockId=spi_pins block="spi set pins|MOSI %mosi|MISO %miso|SCK %sck"
//% mosi.fieldEditor="gridpicker" mosi.fieldOptions.columns=4
//% mosi.fieldOptions.tooltips="false" mosi.fieldOptions.width="250"
//% miso.fieldEditor="gridpicker" miso.fieldOptions.columns=4
//% miso.fieldOptions.tooltips="false" miso.fieldOptions.width="250"
//% sck.fieldEditor="gridpicker" sck.fieldOptions.columns=4
//% sck.fieldOptions.tooltips="false" sck.fieldOptions.width="250"
void spiPins(DigitalPin mosi, DigitalPin miso, DigitalPin sck) {
if (NULL != spi) {
delete spi;
spi = NULL;
}
spi = new SPI(PIN_ARG(mosi), PIN_ARG(miso), PIN_ARG(sck));
}
/**
* Mounts a push button on the given pin
*/
//% help=pins/push-button advanced=true
void pushButton(DigitalPin pin) {
#if MICROBIT_CODAL
new MicroBitButton(PIN_ARG(pin), (int)pin, DEVICE_BUTTON_ALL_EVENTS, ACTIVE_LOW, codal::PullMode::Up);
#else
new MicroBitButton(PIN_ARG(pin), PinMode::PullUp);
#endif
}
}