332 lines
12 KiB
C++
332 lines
12 KiB
C++
#include "ksbit.h"
|
|
|
|
enum class DigitalPin {
|
|
P0 = MICROBIT_ID_IO_P0, // edge connector 0
|
|
P1 = MICROBIT_ID_IO_P1, // edge connector 1
|
|
P2 = MICROBIT_ID_IO_P2, // edge connector 2
|
|
P3 = CALLIOPE_ID_IO_P22, // edge connector 3
|
|
C4 = MICROBIT_ID_IO_P3, // LED matrix C1
|
|
C5 = MICROBIT_ID_IO_P4, // LED matrix C2
|
|
C6 = MICROBIT_ID_IO_P10, // LED matrix C3
|
|
C7 = CALLIOPE_ID_IO_P7, // LED matrix C4
|
|
C8 = CALLIOPE_ID_IO_P8, // LED matrix C5
|
|
C9 = CALLIOPE_ID_IO_P9, // LED matrix C6
|
|
C10 = MICROBIT_ID_IO_P9, // LED matrix C7
|
|
C11 = MICROBIT_ID_IO_P7, // LED matrix C8
|
|
C12 = MICROBIT_ID_IO_P6, // LED matrix C9
|
|
C13 = CALLIOPE_ID_IO_P13, // LED matrix R1
|
|
C14 = CALLIOPE_ID_IO_P14, // LED matrix R2
|
|
C15 = CALLIOPE_ID_IO_P15, // LED matrix R3
|
|
//P16 = MICROBIT_ID_IO_P16,
|
|
C19 = MICROBIT_ID_IO_P19, // SCL
|
|
C20 = MICROBIT_ID_IO_P20 // SDA
|
|
};
|
|
|
|
enum class AnalogPin {
|
|
//P0 = MICROBIT_ID_IO_P0, -- does not work analogue
|
|
P1 = MICROBIT_ID_IO_P1, // edge connector 1
|
|
P2 = MICROBIT_ID_IO_P2, // edge connector 2
|
|
//P3 = CALLIOPE_ID_IO_P22, -- does not work analogue
|
|
C4 = MICROBIT_ID_IO_P3,
|
|
C5 = MICROBIT_ID_IO_P4,
|
|
C6 = MICROBIT_ID_IO_P10,
|
|
};
|
|
|
|
enum class PulseValue {
|
|
High = MICROBIT_PIN_EVT_PULSE_HI,
|
|
Low = MICROBIT_PIN_EVT_PULSE_LO
|
|
};
|
|
|
|
enum class PinPullMode {
|
|
//% block="down"
|
|
PullDown = 0,
|
|
//% block="up"
|
|
PullUp = 1,
|
|
//% block="none"
|
|
PullNone = 2
|
|
};
|
|
|
|
MicroBitPin *getPin(int id) {
|
|
switch (id) {
|
|
case MICROBIT_ID_IO_P0: return &uBit.io.P0;
|
|
case MICROBIT_ID_IO_P1: return &uBit.io.P1;
|
|
case MICROBIT_ID_IO_P2: return &uBit.io.P2;
|
|
case MICROBIT_ID_IO_P3: return &uBit.io.P3;
|
|
case MICROBIT_ID_IO_P4: return &uBit.io.P4;
|
|
case MICROBIT_ID_IO_P5: return &uBit.io.P5;
|
|
case MICROBIT_ID_IO_P6: return &uBit.io.P6;
|
|
case MICROBIT_ID_IO_P7: return &uBit.io.P7;
|
|
//case MICROBIT_ID_IO_P8: return &uBit.io.P8;
|
|
case MICROBIT_ID_IO_P9: return &uBit.io.P9;
|
|
case MICROBIT_ID_IO_P10: return &uBit.io.P10;
|
|
case MICROBIT_ID_IO_P11: return &uBit.io.P11;
|
|
//case MICROBIT_ID_IO_P12: return &uBit.io.P12;
|
|
//case MICROBIT_ID_IO_P13: return &uBit.io.P13;
|
|
//case MICROBIT_ID_IO_P14: return &uBit.io.P14;
|
|
//case MICROBIT_ID_IO_P15: return &uBit.io.P15;
|
|
//case MICROBIT_ID_IO_P16: return &uBit.io.P16;
|
|
case MICROBIT_ID_IO_P19: return &uBit.io.P19;
|
|
case MICROBIT_ID_IO_P20: return &uBit.io.P20;
|
|
case CALLIOPE_ID_IO_P3: return &uBit.io.CAL_P3;
|
|
case CALLIOPE_ID_IO_P7: return &uBit.io.CAL_P7;
|
|
case CALLIOPE_ID_IO_P8: return &uBit.io.CAL_P8;
|
|
case CALLIOPE_ID_IO_P9: return &uBit.io.CAL_P9;
|
|
case CALLIOPE_ID_IO_P13: return &uBit.io.CAL_P13;
|
|
case CALLIOPE_ID_IO_P14: return &uBit.io.CAL_P14;
|
|
case CALLIOPE_ID_IO_P15: return &uBit.io.CAL_P15;
|
|
case CALLIOPE_ID_IO_P22: return &uBit.io.CAL_P22;
|
|
case CALLIOPE_ID_IO_P28: return &uBit.io.CAL_P28;
|
|
case CALLIOPE_ID_IO_P29: return &uBit.io.CAL_P29;
|
|
case CALLIOPE_ID_IO_P30: return &uBit.io.CAL_P30;
|
|
default: return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
namespace pins {
|
|
#define PINOP(op) \
|
|
MicroBitPin *pin = getPin((int)name); \
|
|
if (!pin) return; \
|
|
pin->op
|
|
|
|
#define PINREAD(op) \
|
|
MicroBitPin *pin = getPin((int)name); \
|
|
if (!pin) return 0; \
|
|
return pin->op
|
|
|
|
|
|
//%
|
|
MicroBitPin *getPinAddress(int id) {
|
|
return getPin(id);
|
|
}
|
|
|
|
/**
|
|
* Read the specified pin or connector as either 0 or 1
|
|
* @param name pin to read from
|
|
*/
|
|
//% help=pins/digital-read-pin weight=30
|
|
//% blockId=device_get_digital_pin block="digital read|pin %name" blockGap=8
|
|
int digitalReadPin(DigitalPin name) {
|
|
PINREAD(getDigitalValue());
|
|
}
|
|
|
|
/**
|
|
* Set a pin or connector value to either 0 or 1.
|
|
* @param name pin to write to
|
|
* @param value value to set on the pin, 1 eg,0
|
|
*/
|
|
//% help=pins/digital-write-pin weight=29
|
|
//% blockId=device_set_digital_pin block="digital write|pin %name|to %value"
|
|
void digitalWritePin(DigitalPin name, int value) {
|
|
PINOP(setDigitalValue(value));
|
|
}
|
|
|
|
/**
|
|
* Read the connector value as analog, that is, as a value comprised between 0 and 1023.
|
|
* @param name pin to write to
|
|
*/
|
|
//% help=pins/analog-read-pin weight=25
|
|
//% blockId=device_get_analog_pin block="analog read|pin %name" blockGap="8"
|
|
int analogReadPin(AnalogPin name) {
|
|
PINREAD(getAnalogValue());
|
|
}
|
|
|
|
/**
|
|
* Set the connector value as analog. Value must be comprised between 0 and 1023.
|
|
* @param name pin name to write to
|
|
* @param value value to write to the pin between ``0`` and ``1023``. eg:1023,0
|
|
*/
|
|
//% help=pins/analog-write-pin weight=24
|
|
//% blockId=device_set_analog_pin block="analog write|pin %name|to %value" blockGap=8
|
|
void analogWritePin(AnalogPin name, int value) {
|
|
PINOP(setAnalogValue(value));
|
|
}
|
|
|
|
/**
|
|
* Configures the Pulse-width modulation (PWM) of the analog output to the given value in **microseconds** or `1/1000` milliseconds.
|
|
* If this pin is not configured as an analog output (using `analog write pin`), the operation has no effect.
|
|
* @param name analog pin to set period to
|
|
* @param micros period in micro seconds. eg:20000
|
|
*/
|
|
//% help=pins/analog-set-period weight=23 blockGap=8
|
|
//% blockId=device_set_analog_period block="analog set period|pin %pin|to (µs)%micros"
|
|
void analogSetPeriod(AnalogPin name, int micros) {
|
|
PINOP(setAnalogPeriodUs(micros));
|
|
}
|
|
|
|
/**
|
|
* Configures this pin to a digital input, and generates events where the timestamp is the duration that this pin was either ``high`` or ``low``.
|
|
*/
|
|
//% help=pins/on-pulsed weight=22 blockGap=8
|
|
//% blockId=pins_on_pulsed block="on|pin %pin|pulsed %pulse"
|
|
void onPulsed(DigitalPin name, PulseValue pulse, Action body) {
|
|
MicroBitPin* pin = getPin((int)name);
|
|
if (!pin) return;
|
|
|
|
pin->eventOn(MICROBIT_PIN_EVENT_ON_PULSE);
|
|
registerWithDal((int)name, (int)pulse, body);
|
|
}
|
|
|
|
/**
|
|
* Gets the duration of the last pulse in micro-seconds. This function should be called from a ``onPulsed`` handler.
|
|
*/
|
|
//% help=pins/pulse-duration
|
|
//% blockId=pins_pulse_duration block="pulse duration (µs)"
|
|
//% weight=21 blockGap=8
|
|
int pulseDuration() {
|
|
return pxt::lastEvent.timestamp;
|
|
}
|
|
|
|
/**
|
|
* Returns the duration of a pulse in microseconds
|
|
* @param name the pin which measures the pulse
|
|
* @param value the value of the pulse (default high)
|
|
* @param maximum duration in micro-seconds
|
|
*/
|
|
//% blockId="pins_pulse_in" block="pulse in (µs)|pin %name|pulsed %value"
|
|
//% weight=20
|
|
int pulseIn(DigitalPin name, PulseValue value, int maxDuration = 2000000) {
|
|
MicroBitPin* pin = getPin((int)name);
|
|
if (!pin) return 0;
|
|
|
|
int pulse = value == PulseValue::High ? 1 : 0;
|
|
uint64_t tick = system_timer_current_time_us();
|
|
uint64_t maxd = (uint64_t)maxDuration;
|
|
while(pin->getDigitalValue() != pulse) {
|
|
if(system_timer_current_time_us() - tick > maxd)
|
|
return 0;
|
|
}
|
|
|
|
uint64_t start = system_timer_current_time_us();
|
|
while(pin->getDigitalValue() == pulse) {
|
|
if(system_timer_current_time_us() - tick > maxd)
|
|
return 0;
|
|
}
|
|
uint64_t end = system_timer_current_time_us();
|
|
return end - start;
|
|
}
|
|
|
|
/**
|
|
* Writes a value to the servo, controlling the shaft accordingly. On a standard servo, this will set the angle of the shaft (in degrees), moving the shaft to that orientation. On a continuous rotation servo, this will set the speed of the servo (with ``0`` being full-speed in one direction, ``180`` being full speed in the other, and a value near ``90`` being no movement).
|
|
* @param name pin to write to
|
|
* @param value angle or rotation speed, eg:180,90,0
|
|
*/
|
|
//% help=pins/servo-write-pin weight=20
|
|
//% blockId=device_set_servo_pin block="servo write|pin %name|to %value" blockGap=8
|
|
//% parts=microservo trackArgs=0
|
|
void servoWritePin(AnalogPin name, int value) {
|
|
PINOP(setServoValue(value));
|
|
}
|
|
|
|
/**
|
|
* Configures this IO pin as an analog/pwm output, configures the period to be 20 ms, and sets the pulse width, based on the value it is given **microseconds** or `1/1000` milliseconds.
|
|
* @param name pin name
|
|
* @param micros pulse duration in micro seconds, eg:1500
|
|
*/
|
|
//% help=pins/servo-set-pulse weight=19
|
|
//% blockId=device_set_servo_pulse block="servo set pulse|pin %value|to (µs) %micros"
|
|
void servoSetPulse(AnalogPin name, int micros) {
|
|
PINOP(setServoPulseUs(micros));
|
|
}
|
|
|
|
|
|
MicroBitPin* pitchPin = NULL;
|
|
|
|
/**
|
|
* Sets the pin used when using `pins->analog pitch`.
|
|
* @param name TODO
|
|
*/
|
|
//% help=pins/analog-set-pitch weight=12
|
|
void analogSetPitchPin(AnalogPin name) {
|
|
pitchPin = getPin((int)name);
|
|
}
|
|
|
|
/**
|
|
* Emits a Pulse-width modulation (PWM) signal to the current pitch pin. Use `analog set pitch pin` to define the pitch pin.
|
|
* @param frequency TODO
|
|
* @param ms TODO
|
|
*/
|
|
//% help=pins/analog-pitch weight=14 async
|
|
void analogPitch(int frequency, int ms) {
|
|
if (pitchPin == NULL) return;
|
|
if (frequency <= 0) {
|
|
pitchPin->setAnalogValue(0);
|
|
} else {
|
|
pitchPin->setAnalogValue(512);
|
|
pitchPin->setAnalogPeriodUs(1000000/frequency);
|
|
}
|
|
|
|
if (ms > 0) {
|
|
fiber_sleep(ms);
|
|
pitchPin->setAnalogValue(0);
|
|
// TODO why do we use wait_ms() here? it's a busy wait I think
|
|
wait_ms(5);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Configures the pull of this pin.
|
|
* @param name pin to set the pull mode on
|
|
* @param pull one of the mbed pull configurations: PullUp, PullDown, PullNone
|
|
*/
|
|
//% help=pins/set-pull weight=3
|
|
//% blockId=device_set_pull block="set pull|pin %pin|to %pull"
|
|
void setPull(DigitalPin name, PinPullMode pull) {
|
|
PinMode m = pull == PinPullMode::PullDown
|
|
? PinMode::PullDown
|
|
: pull == PinPullMode::PullUp ? PinMode::PullUp
|
|
: PinMode::PullNone;
|
|
PINOP(setPull(m));
|
|
}
|
|
|
|
/**
|
|
* Create a new zero-initialized buffer.
|
|
* @param size number of bytes in the buffer
|
|
*/
|
|
//%
|
|
Buffer createBuffer(int size)
|
|
{
|
|
return ManagedBuffer(size).leakData();
|
|
}
|
|
|
|
/**
|
|
* Read `size` bytes from a 7-bit I2C `address`.
|
|
*/
|
|
//%
|
|
Buffer i2cReadBuffer(int address, int size, bool repeat = false)
|
|
{
|
|
Buffer buf = createBuffer(size);
|
|
uBit.i2c.read(address << 1, (char*)buf->payload, size, repeat);
|
|
return buf;
|
|
}
|
|
|
|
/**
|
|
* Write bytes to a 7-bit I2C `address`.
|
|
*/
|
|
//%
|
|
void i2cWriteBuffer(int address, Buffer buf, bool repeat = false)
|
|
{
|
|
uBit.i2c.write(address << 1, (char*)buf->payload, buf->length, repeat);
|
|
}
|
|
|
|
SPI* spi = NULL;
|
|
SPI* allocSPI() {
|
|
if (spi == NULL)
|
|
spi = new SPI(MOSI, MISO, SCK);
|
|
return spi;
|
|
}
|
|
|
|
/**
|
|
* Write to the SPI slave and return the response
|
|
* @param value Data to be sent to the SPI slave
|
|
*/
|
|
//% help=pins/spi-write weight=5
|
|
//% blockId=spi_write block="spi write %value"
|
|
int spiWrite(int value) {
|
|
auto p = allocSPI();
|
|
return p->write(value);
|
|
}
|
|
|
|
}
|