pxt-calliope/libs/core/pins.cpp
2016-11-10 21:00:03 +01:00

332 lines
12 KiB
C++

#include "ksbit.h"
enum class DigitalPin {
P0 = MICROBIT_ID_IO_P0, // edge connector 0
P1 = MICROBIT_ID_IO_P1, // edge connector 1
P2 = MICROBIT_ID_IO_P2, // edge connector 2
P3 = CALLIOPE_ID_IO_P22, // edge connector 3
C4 = MICROBIT_ID_IO_P3, // LED matrix C1
C5 = MICROBIT_ID_IO_P4, // LED matrix C2
C6 = MICROBIT_ID_IO_P10, // LED matrix C3
C7 = CALLIOPE_ID_IO_P7, // LED matrix C4
C8 = CALLIOPE_ID_IO_P8, // LED matrix C5
C9 = CALLIOPE_ID_IO_P9, // LED matrix C6
C10 = MICROBIT_ID_IO_P9, // LED matrix C7
C11 = MICROBIT_ID_IO_P7, // LED matrix C8
C12 = MICROBIT_ID_IO_P6, // LED matrix C9
C13 = CALLIOPE_ID_IO_P13, // LED matrix R1
C14 = CALLIOPE_ID_IO_P14, // LED matrix R2
C15 = CALLIOPE_ID_IO_P15, // LED matrix R3
//P16 = MICROBIT_ID_IO_P16,
C19 = MICROBIT_ID_IO_P19, // SCL
C20 = MICROBIT_ID_IO_P20 // SDA
};
enum class AnalogPin {
//P0 = MICROBIT_ID_IO_P0, -- does not work analogue
P1 = MICROBIT_ID_IO_P1, // edge connector 1
P2 = MICROBIT_ID_IO_P2, // edge connector 2
//P3 = CALLIOPE_ID_IO_P22, -- does not work analogue
C4 = MICROBIT_ID_IO_P3,
C5 = MICROBIT_ID_IO_P4,
C6 = MICROBIT_ID_IO_P10,
};
enum class PulseValue {
High = MICROBIT_PIN_EVT_PULSE_HI,
Low = MICROBIT_PIN_EVT_PULSE_LO
};
enum class PinPullMode {
//% block="down"
PullDown = 0,
//% block="up"
PullUp = 1,
//% block="none"
PullNone = 2
};
MicroBitPin *getPin(int id) {
switch (id) {
case MICROBIT_ID_IO_P0: return &uBit.io.P0;
case MICROBIT_ID_IO_P1: return &uBit.io.P1;
case MICROBIT_ID_IO_P2: return &uBit.io.P2;
case MICROBIT_ID_IO_P3: return &uBit.io.P3;
case MICROBIT_ID_IO_P4: return &uBit.io.P4;
case MICROBIT_ID_IO_P5: return &uBit.io.P5;
case MICROBIT_ID_IO_P6: return &uBit.io.P6;
case MICROBIT_ID_IO_P7: return &uBit.io.P7;
//case MICROBIT_ID_IO_P8: return &uBit.io.P8;
case MICROBIT_ID_IO_P9: return &uBit.io.P9;
case MICROBIT_ID_IO_P10: return &uBit.io.P10;
case MICROBIT_ID_IO_P11: return &uBit.io.P11;
//case MICROBIT_ID_IO_P12: return &uBit.io.P12;
//case MICROBIT_ID_IO_P13: return &uBit.io.P13;
//case MICROBIT_ID_IO_P14: return &uBit.io.P14;
//case MICROBIT_ID_IO_P15: return &uBit.io.P15;
//case MICROBIT_ID_IO_P16: return &uBit.io.P16;
case MICROBIT_ID_IO_P19: return &uBit.io.P19;
case MICROBIT_ID_IO_P20: return &uBit.io.P20;
case CALLIOPE_ID_IO_P3: return &uBit.io.CAL_P3;
case CALLIOPE_ID_IO_P7: return &uBit.io.CAL_P7;
case CALLIOPE_ID_IO_P8: return &uBit.io.CAL_P8;
case CALLIOPE_ID_IO_P9: return &uBit.io.CAL_P9;
case CALLIOPE_ID_IO_P13: return &uBit.io.CAL_P13;
case CALLIOPE_ID_IO_P14: return &uBit.io.CAL_P14;
case CALLIOPE_ID_IO_P15: return &uBit.io.CAL_P15;
case CALLIOPE_ID_IO_P22: return &uBit.io.CAL_P22;
case CALLIOPE_ID_IO_P28: return &uBit.io.CAL_P28;
case CALLIOPE_ID_IO_P29: return &uBit.io.CAL_P29;
case CALLIOPE_ID_IO_P30: return &uBit.io.CAL_P30;
default: return NULL;
}
}
namespace pins {
#define PINOP(op) \
MicroBitPin *pin = getPin((int)name); \
if (!pin) return; \
pin->op
#define PINREAD(op) \
MicroBitPin *pin = getPin((int)name); \
if (!pin) return 0; \
return pin->op
//%
MicroBitPin *getPinAddress(int id) {
return getPin(id);
}
/**
* Read the specified pin or connector as either 0 or 1
* @param name pin to read from
*/
//% help=pins/digital-read-pin weight=30
//% blockId=device_get_digital_pin block="digital read|pin %name" blockGap=8
int digitalReadPin(DigitalPin name) {
PINREAD(getDigitalValue());
}
/**
* Set a pin or connector value to either 0 or 1.
* @param name pin to write to
* @param value value to set on the pin, 1 eg,0
*/
//% help=pins/digital-write-pin weight=29
//% blockId=device_set_digital_pin block="digital write|pin %name|to %value"
void digitalWritePin(DigitalPin name, int value) {
PINOP(setDigitalValue(value));
}
/**
* Read the connector value as analog, that is, as a value comprised between 0 and 1023.
* @param name pin to write to
*/
//% help=pins/analog-read-pin weight=25
//% blockId=device_get_analog_pin block="analog read|pin %name" blockGap="8"
int analogReadPin(AnalogPin name) {
PINREAD(getAnalogValue());
}
/**
* Set the connector value as analog. Value must be comprised between 0 and 1023.
* @param name pin name to write to
* @param value value to write to the pin between ``0`` and ``1023``. eg:1023,0
*/
//% help=pins/analog-write-pin weight=24
//% blockId=device_set_analog_pin block="analog write|pin %name|to %value" blockGap=8
void analogWritePin(AnalogPin name, int value) {
PINOP(setAnalogValue(value));
}
/**
* Configures the Pulse-width modulation (PWM) of the analog output to the given value in **microseconds** or `1/1000` milliseconds.
* If this pin is not configured as an analog output (using `analog write pin`), the operation has no effect.
* @param name analog pin to set period to
* @param micros period in micro seconds. eg:20000
*/
//% help=pins/analog-set-period weight=23 blockGap=8
//% blockId=device_set_analog_period block="analog set period|pin %pin|to (µs)%micros"
void analogSetPeriod(AnalogPin name, int micros) {
PINOP(setAnalogPeriodUs(micros));
}
/**
* Configures this pin to a digital input, and generates events where the timestamp is the duration that this pin was either ``high`` or ``low``.
*/
//% help=pins/on-pulsed weight=22 blockGap=8
//% blockId=pins_on_pulsed block="on|pin %pin|pulsed %pulse"
void onPulsed(DigitalPin name, PulseValue pulse, Action body) {
MicroBitPin* pin = getPin((int)name);
if (!pin) return;
pin->eventOn(MICROBIT_PIN_EVENT_ON_PULSE);
registerWithDal((int)name, (int)pulse, body);
}
/**
* Gets the duration of the last pulse in micro-seconds. This function should be called from a ``onPulsed`` handler.
*/
//% help=pins/pulse-duration
//% blockId=pins_pulse_duration block="pulse duration (µs)"
//% weight=21 blockGap=8
int pulseDuration() {
return pxt::lastEvent.timestamp;
}
/**
* Returns the duration of a pulse in microseconds
* @param name the pin which measures the pulse
* @param value the value of the pulse (default high)
* @param maximum duration in micro-seconds
*/
//% blockId="pins_pulse_in" block="pulse in (µs)|pin %name|pulsed %value"
//% weight=20
int pulseIn(DigitalPin name, PulseValue value, int maxDuration = 2000000) {
MicroBitPin* pin = getPin((int)name);
if (!pin) return 0;
int pulse = value == PulseValue::High ? 1 : 0;
uint64_t tick = system_timer_current_time_us();
uint64_t maxd = (uint64_t)maxDuration;
while(pin->getDigitalValue() != pulse) {
if(system_timer_current_time_us() - tick > maxd)
return 0;
}
uint64_t start = system_timer_current_time_us();
while(pin->getDigitalValue() == pulse) {
if(system_timer_current_time_us() - tick > maxd)
return 0;
}
uint64_t end = system_timer_current_time_us();
return end - start;
}
/**
* Writes a value to the servo, controlling the shaft accordingly. On a standard servo, this will set the angle of the shaft (in degrees), moving the shaft to that orientation. On a continuous rotation servo, this will set the speed of the servo (with ``0`` being full-speed in one direction, ``180`` being full speed in the other, and a value near ``90`` being no movement).
* @param name pin to write to
* @param value angle or rotation speed, eg:180,90,0
*/
//% help=pins/servo-write-pin weight=20
//% blockId=device_set_servo_pin block="servo write|pin %name|to %value" blockGap=8
//% parts=microservo trackArgs=0
void servoWritePin(AnalogPin name, int value) {
PINOP(setServoValue(value));
}
/**
* Configures this IO pin as an analog/pwm output, configures the period to be 20 ms, and sets the pulse width, based on the value it is given **microseconds** or `1/1000` milliseconds.
* @param name pin name
* @param micros pulse duration in micro seconds, eg:1500
*/
//% help=pins/servo-set-pulse weight=19
//% blockId=device_set_servo_pulse block="servo set pulse|pin %value|to (µs) %micros"
void servoSetPulse(AnalogPin name, int micros) {
PINOP(setServoPulseUs(micros));
}
MicroBitPin* pitchPin = NULL;
/**
* Sets the pin used when using `pins->analog pitch`.
* @param name TODO
*/
//% help=pins/analog-set-pitch weight=12
void analogSetPitchPin(AnalogPin name) {
pitchPin = getPin((int)name);
}
/**
* Emits a Pulse-width modulation (PWM) signal to the current pitch pin. Use `analog set pitch pin` to define the pitch pin.
* @param frequency TODO
* @param ms TODO
*/
//% help=pins/analog-pitch weight=14 async
void analogPitch(int frequency, int ms) {
if (pitchPin == NULL) return;
if (frequency <= 0) {
pitchPin->setAnalogValue(0);
} else {
pitchPin->setAnalogValue(512);
pitchPin->setAnalogPeriodUs(1000000/frequency);
}
if (ms > 0) {
fiber_sleep(ms);
pitchPin->setAnalogValue(0);
// TODO why do we use wait_ms() here? it's a busy wait I think
wait_ms(5);
}
}
/**
* Configures the pull of this pin.
* @param name pin to set the pull mode on
* @param pull one of the mbed pull configurations: PullUp, PullDown, PullNone
*/
//% help=pins/set-pull weight=3
//% blockId=device_set_pull block="set pull|pin %pin|to %pull"
void setPull(DigitalPin name, PinPullMode pull) {
PinMode m = pull == PinPullMode::PullDown
? PinMode::PullDown
: pull == PinPullMode::PullUp ? PinMode::PullUp
: PinMode::PullNone;
PINOP(setPull(m));
}
/**
* Create a new zero-initialized buffer.
* @param size number of bytes in the buffer
*/
//%
Buffer createBuffer(int size)
{
return ManagedBuffer(size).leakData();
}
/**
* Read `size` bytes from a 7-bit I2C `address`.
*/
//%
Buffer i2cReadBuffer(int address, int size, bool repeat = false)
{
Buffer buf = createBuffer(size);
uBit.i2c.read(address << 1, (char*)buf->payload, size, repeat);
return buf;
}
/**
* Write bytes to a 7-bit I2C `address`.
*/
//%
void i2cWriteBuffer(int address, Buffer buf, bool repeat = false)
{
uBit.i2c.write(address << 1, (char*)buf->payload, buf->length, repeat);
}
SPI* spi = NULL;
SPI* allocSPI() {
if (spi == NULL)
spi = new SPI(MOSI, MISO, SCK);
return spi;
}
/**
* Write to the SPI slave and return the response
* @param value Data to be sent to the SPI slave
*/
//% help=pins/spi-write weight=5
//% blockId=spi_write block="spi write %value"
int spiWrite(int value) {
auto p = allocSPI();
return p->write(value);
}
}