Adding link instructions (#787)

This commit is contained in:
Richard Knoll
2018-09-20 14:05:59 -07:00
committed by Peli de Halleux
parent bfb258ce61
commit 245ff9d5b2
10 changed files with 198 additions and 120 deletions

View File

@ -12,7 +12,7 @@ Design cars that can park themselves safely without driver intervention.
* What would it take to ensure that autonomous cars are safe?
* What types of movements do autonomous cars need to perform?
## Construct
## Construct
### Build
@ -20,6 +20,12 @@ Build a @boardname@ vehicle that can park itself safely without driver intervent
[![EV3- Robot Driving Base](/static/coding/autonomous-parking/ev3-robot-driving-base.jpg)](https://le-www-live-s.legocdn.com/sc/media/lessons/mindstorms-ev3/building-instructions/ev3-rem-driving-base-79bebfc16bd491186ea9c9069842155e.pdf)
### ~hint
If clicking the above image doesn't open the instructions, right-click on the image and choose "Save link as..." to download the PDF.
### ~
### Check
Before you program, check:
@ -28,7 +34,7 @@ Before you program, check:
* Are the wheels correctly installed?
* Are the wheels rotating freely?
### Program
### Program
Write a program that will make the robot turn three times in various ways.
@ -109,7 +115,7 @@ Click Download and follow the instructions to get your code onto your EV3 Brick.
### Differentiation
Create a program that simulates displaying appropriate warning lights while parking.
Create a program that simulates displaying appropriate warning lights while parking.
### ~hint
@ -164,8 +170,8 @@ Click Download and follow the instructions to get your code onto your EV3 Brick.
* Click on the JavaScript tab and experiment with changing the values in the code.
* Add a custom image or sounds from the Brick or Music menus.
* Create a video of your project, especially your final presentation and your robots performance. Explain some important features of your software program.
* Include an image of your program with comments.
* Add a team photograph!
* Create a video of your project, especially your final presentation and your robots performance. Explain some important features of your software program.
* Include an image of your program with comments.
* Add a team photograph!
Congratulations! What will you design next?

View File

@ -24,6 +24,12 @@ Build red and green “lights” for your robot to detect. You can use LEGO bric
[![IMAGE: Color Squares](/static/coding/line-detection/ev3-color-squares.jpg)](https://le-www-live-s.legocdn.com/sc/media/files/support/mindstorms%20ev3/building-instructions/design%20engineering%20projects/color%20squares-0a88dfd98bb2e64b5b8151fc422bae36.pdf)
### ~hint
If clicking the above images doesn't open the instructions, right-click on the image and choose "Save link as..." to download the PDF.
### ~
### Check
Before you program, check:
@ -51,7 +57,7 @@ Consider using these blocks in your solution:
```block
loops.forever(function () {
})
motors.largeBC.steer(0, 50)
sensors.color3.pauseUntilColorDetected(ColorSensorColor.Red)
@ -77,9 +83,9 @@ loops.forever(function () {
### Download and test
Click **Download** and follow the instructions to get your code onto your EV3 Brick.
Click **Download** and follow the instructions to get your code onto your EV3 Brick.
Congratulations! Your robot can stop at a red light.
Congratulations! Your robot can stop at a red light.
Now add to your program and have your robot to drive forward again when the light changes from red to green.
@ -102,7 +108,7 @@ loops.forever(function () {
### Download and test
Click **Download** and follow the instructions to get your code onto your EV3 Brick.
Click **Download** and follow the instructions to get your code onto your EV3 Brick.
## Contemplate
@ -116,7 +122,7 @@ Draw a dark line with tape or marker for your robot to cross.
Consider using these blocks in your solution:
```block
```block
motors.largeBC.steer(0, 50)
music.playSoundEffect(sounds.systemGeneralAlert)
```
@ -143,7 +149,7 @@ loops.forever(function () {
#### Download and test
Click **Download** and follow the instructions to get your code onto your EV3 Brick.
Click **Download** and follow the instructions to get your code onto your EV3 Brick.
#### Differentiation
@ -157,7 +163,7 @@ Consider using these blocks in your solution:
```block
while (true) {
}
motors.largeBC.steer(0, 50)
```
@ -166,7 +172,7 @@ motors.largeBC.steer(0, 50)
```block
if (true) {
} else {
}
@ -215,7 +221,7 @@ forever(function () {
### Download and test
Click **Download** and follow the instructions to get your code onto your EV3 Brick.
Click **Download** and follow the instructions to get your code onto your EV3 Brick.
### Share
@ -232,8 +238,8 @@ Personalize:
* Click on the **JavaScript** tab and experiment with changing the values in the code.
* Add a custom image or sounds from the ``||brick:Brick||`` or ``||music:Music||`` menus.
* Create a video of your project, especially your final presentation and your robots performance. Explain some important features of your software program.
* Include an image of your program with comments.
* Add a team photograph!
* Create a video of your project, especially your final presentation and your robots performance. Explain some important features of your software program.
* Include an image of your program with comments.
* Add a team photograph!
Congratulations! What will you design next?

View File

@ -4,7 +4,7 @@ Design ways to avoid accidents between vehicles and objects in the road.
![Deer in the road](/static/coding/object-detection/road-deer.jpg)
## Connect
## Connect
Think about:
@ -12,7 +12,7 @@ Think about:
* What do you need to be aware of to avoid collisions with obstacles?
* What causes traffic jams in high density areas?
## Construct
## Construct
### Build
@ -20,10 +20,16 @@ Build a @boardname@ vehicle that can avoid accidents between vehicles and object
[![EV3 Robot Driving Base](/static/coding/object-detection/ev3-robot-driving-base.jpg)](https://le-www-live-s.legocdn.com/sc/media/lessons/mindstorms-ev3/building-instructions/ev3-ultrasonic-sensor-driving-base-61ffdfa461aee2470b8ddbeab16e2070.pdf)
Build an obstacle for your robot to detect. You can build the **cuboid model** out of LEGO bricks or an obstacle of your choice.
Build an obstacle for your robot to detect. You can build the **cuboid model** out of LEGO bricks or an obstacle of your choice.
[![Cubiod block](/static/coding/object-detection/ev3-cuboid.jpg)](https://le-www-live-s.legocdn.com/sc/media/lessons/mindstorms-ev3/building-instructions/ev3-cuboid-dc93b2e60bed2981e76b3bac9ea04558.pdf)
### ~hint
If clicking the above images doesn't open the instructions, right-click on the image and choose "Save link as..." to download the PDF.
### ~
### Check
Before you program, check:
@ -38,7 +44,7 @@ Before you program, check:
* Program your robot to detect any obstacles that might appear while the robot is moving forward (or backward).
* Make the robot stop when it detects an object that is less than 20 cm away.
Before you program, think about:
Before you program, think about:
* How will you program the robot to detect obstacles?
* How will you program the robot to stop at obstacles?
* Which programming blocks will you use?
@ -59,7 +65,7 @@ motors.stopAll()
### ~
### Sample Solution
### Sample Solution
1. Start the program when EV3 ``enter`` button is pressed.
2. Turn motors ``B`` and ``C`` on at speed ``50``.
@ -80,7 +86,7 @@ Click **Download** and follow the instructions to get your code onto your EV3 Br
## Contemplate
On the road, when a driver sees and object, they slow their car down before coming to a full stop.
On the road, when a driver sees and object, they slow their car down before coming to a full stop.
Program your EV3 Driving Base to do the same.
@ -93,7 +99,7 @@ If the Ultrasonic Sensor:
### ~hint
Consider using this block in your solution:
```block
if (true) {
}
@ -101,7 +107,7 @@ if (true) {
### ~
### Sample Solution
### Sample Solution
```blocks
loops.forever(function () {
@ -118,7 +124,7 @@ loops.forever(function () {
Click **Download** and follow the instructions to get your code onto your EV3 Brick. Press the ``center`` button on the EV3 Brick to run the program.
## Continue
## Continue
* Get together with other building teams and make a traffic jam by placing all of your robots in a line with varying amounts of space between them.
* Have everyone start their robots at the same time and see what happens.
@ -130,8 +136,8 @@ Click **Download** and follow the instructions to get your code onto your EV3 Br
* Share what you think “efficiency in programming” means.
* Explore the different solutions other programmers came up with.
* Create a video of your project, especially your final presentation and your robots performance. Explain some important features of your software program.
* Include an image of your program with comments.
* Add a team photograph!
* Create a video of your project, especially your final presentation and your robots performance. Explain some important features of your software program.
* Include an image of your program with comments.
* Add a team photograph!
Congratulations! What will you design next?