Compare commits

...

15 Commits

Author SHA1 Message Date
72a0940235 1.1.20 2019-09-06 06:22:43 -07:00
b08dd8a7d2 Merge branch 'master' of https://github.com/microsoft/pxt-ev3 2019-09-06 06:22:36 -07:00
def648a98b Block updates follow blog post (#905)
* fix battery block comment

* update run phase blocks

* some more docs
2019-09-06 06:22:12 -07:00
32a92789b3 fix battery block comment 2019-09-06 05:23:48 -07:00
9956bb06fb adding wall follower 2019-09-04 21:42:08 -07:00
83b9aecd7a 1.1.19 2019-09-04 14:52:02 -07:00
17ab24eaa9 Ramp (#904)
* updated ramp block

* updated example
2019-09-04 14:51:45 -07:00
9c5d5f9a86 updated block 2019-09-04 13:50:13 -07:00
43a13e0877 added example 2019-09-04 13:42:29 -07:00
fe0915484d 1.1.18 2019-09-04 12:57:17 -07:00
87a65aa38f battery properties (#903)
* Battery params

* move category

* cleanup

* use property

* fix level

* fix battery computation

* fix level comp

* docs
2019-09-04 12:56:45 -07:00
1317da8904 Remove old instructions 2019-09-03 17:34:34 -07:00
62b2881e2a Embed file deleter in PDF file so we can serve it 2019-09-03 16:29:31 -07:00
bf482a2ac9 Do ZIP not UF2 for file manager 2019-09-03 16:11:02 -07:00
243600ad8f Adding file manager program 2019-09-03 16:08:56 -07:00
21 changed files with 602 additions and 144 deletions

BIN
docs/file-manager.pdf Normal file

Binary file not shown.

View File

@ -89,18 +89,11 @@ Sharing programs is also shown in the [Tips and Tricks](https://legoeducation.vi
### Why can't I delete my program (*.uf2) files from the Brick?
There's a bug in the firmware which prevents you from deleting the programs (``*.uf2`` files) from your EV3 Brick. There isn't a firmware update to fix this yet. As a workaround, you can temporarily downgrade your firmware version, delete the files, and then upgrade back to the version that works with MakeCode.
There's a bug in the firmware which prevents you from deleting the programs (``*.uf2`` files) from your EV3 Brick. There isn't a firmware update to fix this yet.
Follow these steps to downgrade your firmware version, delete the files, and uprgade back again:
1. Go into **EV3 LabVIEW** - if it's not installed get it [here](https://education.lego.com/en-us/downloads/mindstorms-ev3/software)
2. Plug in your EV3 Brick and start a new project
3. Go to the **Tools** menu in the upper right corner, select **Firmware Update**
4. In the **Firmware Update** dialog box, click on the **Show Details** button
5. From the **Available Firmware Files** list, select **EV3 Firmware V1.09E**
6. Click the **Update Firmware** button and wait for the update to complete
Now the firmware version on the EV3 Brick will be **V1.09E**. Also, in the process, the downgrade deleted all of the saved programs from the EV3 Brick. To continue to use MakeCode, the firmware version must be at **V1.10E** or above. So, the Brick firmware needs to be upgraded again. If you don't know or do remember how to do this, see the **Upgrade your @drivename@** section in the [troubleshooting](/troubleshoot) page.
We have prepared a special program that lets you delete UF2 files from the brick.
Download [these PDF instructions](/file-manager.pdf) and drop the PDF on the brick drive.
This will present you with an menu for deleting files.
For other common questions, try the FAQ page https://makecode.mindstorms.com/faq.

View File

@ -0,0 +1,47 @@
# battery Property
Return the information about the battery
```sig
brick.batteryInfo(BatteryProperty.Level)
```
## Parameters
* property: the kind of information
## Returns
* a [number](/types/number) which represents the value of the property requested.
## Example
Show the battery level percentage on the screen. Also, show a green light if the battery level is above 15%. If the battery level is below 15% but above 5%, show a orange light. But, if the battery level is below 5%, show a pulsing red light.
```blocks
let battery = 0;
forever(function() {
brick.showString("Battery level:", 1)
brick.showNumber(battery, 2)
battery = brick.batteryInfo(BatteryProperty.Level);
if (battery > 15)
{
brick.setStatusLight(StatusLight.Green);
} else if (battery > 5) {
brick.setStatusLight(StatusLight.Orange);
} else {
brick.setStatusLight(StatusLight.RedPulse)
}
pause(30000)
})
```
Or see all the values
```blocks
forever(function () {
brick.showValue("bat V", brick.batteryInfo(BatteryProperty.Voltage), 1)
brick.showValue("bat %", brick.batteryInfo(BatteryProperty.Level), 2)
brick.showValue("bat I", brick.batteryInfo(BatteryProperty.Current), 3)
})
```

View File

@ -0,0 +1,59 @@
# Ramp
Schedules an acceleration, constant and deceleration phase at a given speed.
```sig
motors.largeA.ramp(50, 100, 500, 100)
```
The speed setting is a percentage of the motor's full speed. Full speed is the speed that the motor runs when the brick supplies maximum output voltage to the port.
## Parameters
* **speed**: a [number](/types/number) that is the percentage of full speed. A negative value runs the motor in the reverse direction.
* **acceleration**: the [number](/types/number) of movement units to rotate for while accelerating.
* **value**: the [number](/types/number) of movement units to rotate for.
* **deceleration**: the [number](/types/number) of movement units to rotate for while decelerating.
* **unit**: the movement unit of rotation. This can be `milliseconds`, `seconds`, `degrees`, or `rotations`. If the number for **value** is `0`, this parameter isn't used.
## Example
This is an interactive program that lets you change the values of
the acceleration and deceleration and see the effects.
```blocks
let steady = 0
let dec = 0
let acc = 0
brick.buttonLeft.onEvent(ButtonEvent.Pressed, function () {
acc += -100
})
brick.buttonEnter.onEvent(ButtonEvent.Pressed, function () {
motors.largeB.ramp(50, steady, MoveUnit.MilliSeconds, acc, dec)
})
brick.buttonRight.onEvent(ButtonEvent.Pressed, function () {
acc += 100
})
brick.buttonUp.onEvent(ButtonEvent.Pressed, function () {
dec += 100
})
brick.buttonDown.onEvent(ButtonEvent.Pressed, function () {
dec += -100
})
acc = 500
steady = 1000
acc = 500
forever(function () {
brick.showValue("acc", acc, 1)
brick.showValue("steady", steady, 2)
brick.showValue("dec", dec, 3)
brick.showString("acc: left/right", 5)
brick.showString("dec: up/down", 6)
brick.showString("run large B: enter", 7)
})
```
## See also
[tank](/reference/motors/synced/tank), [steer](/reference/motors/synced/steer), [stop](/reference/motors/motor/stop)

View File

@ -1,22 +0,0 @@
# Schedule
Schedules an acceleration, constant and deceleration phase at a given speed.
```sig
motors.largeA.schedule(50, 100, 500, 100)
```
The speed setting is a percentage of the motor's full speed. Full speed is the speed that the motor runs when the brick supplies maximum output voltage to the port.
## Parameters
* **speed**: a [number](/types/number) that is the percentage of full speed. A negative value runs the motor in the reverse direction.
* **acceleration**: the [number](/types/number) of movement units to rotate for while accelerating.
* **value**: the [number](/types/number) of movement units to rotate for.
* **deceleration**: the [number](/types/number) of movement units to rotate for while decelerating.
* **unit**: the movement unit of rotation. This can be `milliseconds`, `seconds`, `degrees`, or `rotations`. If the number for **value** is `0`, this parameter isn't used.
## See also
[tank](/reference/motors/synced/tank), [steer](/reference/motors/synced/steer), [stop](/reference/motors/motor/stop)

View File

@ -0,0 +1,30 @@
# set Brake Settle Time
Set the time to wait after a motor stopped to allow it settle
when brake is enabled. Default is 10ms.
```sig
motors.largeA.setBrakeSettleTime(200)
```
When a the motor is stopped and brake is applied, it can still wiggle for a little while. You can use the settle time to automatically way after stopping and let the robot settle.
## Parameters
* **time**: a [number](/types/number) value which represents the number of milliseconds to wait after braking.
## Example
Set the brake mode and the settle time to 500ms. Run the motor connected to port **A** for 2 seconds at a speed of `30` and stop after 2s.
```blocks
motors.largeA.setBrake(true)
motors.largeA.setBrakeSettleTime(500)
motors.largeA.run(30)
pause(2000)
motors.largeA.stop()
```
## See also
[stop](/reference/motors/motor/stop)

View File

@ -1,28 +1,28 @@
# set Brake
Set the brake on the motor so it won't turn when it has no power.
Set the brake on the motor so it will brake when it finishes a brake command.
```sig
motors.largeA.setBrake(false)
```
When a the motor is stopped, it can still rotate if an external force is applied to it. This can happen, for example, if your're tanking your brick on a inclined surface and stop the motors. Gravity will push down on the brick and might cause it to start rolling again. You can prevent this movement by setting the brake.
When a the motor is stopped, it can still rotate if an external force is applied to it. This can happen, for example, if you're tanking your brick on a inclined surface and stop the motors. Gravity will push down on the brick and might cause it to start rolling again. You can prevent this movement by setting the brake.
Also, you can use the brake to do simple skid steering for your brick.
## Paramters
## Parameters
* **brake**: a [boolean](/types/boolean) value which is either `true` to set the brake on or `false` to set the brake off.
## Example
Run the motor connected to port **A** for 2 seconds at a speed of `30`. Stop and set the brake.
Run the motor connected to port **A** for 2 seconds at a speed of `30` and stop after 2s.
```blocks
motors.largeA.setBrake(true)
motors.largeA.run(30)
pause(2000)
motors.largeA.stop()
motors.largeA.setBrake(true)
```
## See also

View File

@ -1,20 +0,0 @@
# Set Run Acceleration Ramp
```sig
motors.largeD.setRunAccelerationRamp(1, MoveUnit.Seconds)
```
## Examples
```blocks
brick.buttonEnter.onEvent(ButtonEvent.Pressed, function () {
motors.largeB.run(50, 6, MoveUnit.Rotations)
})
brick.buttonLeft.onEvent(ButtonEvent.Pressed, function () {
motors.largeC.run(50, 6, MoveUnit.Seconds)
})
motors.largeB.setRunAccelerationRamp(360, MoveUnit.Degrees)
motors.largeB.setRunDecelerationRamp(360, MoveUnit.Degrees)
motors.largeC.setRunAccelerationRamp(2, MoveUnit.Seconds)
motors.largeC.setRunDecelerationRamp(2, MoveUnit.Seconds)
```

View File

@ -1,20 +0,0 @@
# Set Run Deceleration Ramp
```sig
motors.largeD.setRunDecelerationRamp(1, MoveUnit.Seconds)
```
## Examples
```blocks
brick.buttonEnter.onEvent(ButtonEvent.Pressed, function () {
motors.largeB.run(50, 6, MoveUnit.Rotations)
})
brick.buttonLeft.onEvent(ButtonEvent.Pressed, function () {
motors.largeC.run(50, 6, MoveUnit.Seconds)
})
motors.largeB.setRunAccelerationRamp(360, MoveUnit.Degrees)
motors.largeB.setRunDecelerationRamp(360, MoveUnit.Degrees)
motors.largeC.setRunAccelerationRamp(2, MoveUnit.Seconds)
motors.largeC.setRunDecelerationRamp(2, MoveUnit.Seconds)
```

View File

@ -0,0 +1,26 @@
# Set Run Phase
Allows to specify an acceleration or deceleration phases for run commands.
```sig
motors.largeD.setRunPhase(MovePhase.Acceleration, 1, MoveUnit.Seconds)
```
Once the run phase is specified on a motor (or pair of motors),
it will be automatically applied to [run](/reference/motors/run) commands.
## Time vs Rotation
The phases specified for time units (seconds, milliseconds) only apply to run with time
moves. Similarly, the phases specified for rotation units (# rotation, degrees) only
apply to run with rotation units.
## Examples
```blocks
motors.largeB.setRunPhase(MovePhase.Acceleration, 0.5, MoveUnit.Seconds)
motors.largeB.setRunPhase(MovePhase.Deceleration, 0.2, MoveUnit.Seconds)
forever(function () {
motors.largeB.run(50, 1, MoveUnit.Seconds)
})
```

BIN
docs/static/tutorials/wall-follower.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

View File

@ -25,6 +25,11 @@ Step by step guides to coding your @boardname@.
"description": "Use the color sensor to follow line or detect colors",
"url":"/tutorials/color-sensor",
"imageUrl":"/static/tutorials/what-color.png"
}, {
"name": "Ultrasonic Sensor",
"description": "Use the ultrasonic sensor to detect obstacles",
"url":"/tutorials/ultrasonic-sensor",
"imageUrl":"/static/tutorials/object-near.png"
}, {
"name": "Infrared Sensor",
"description": "Use the infrared sensor to detect objects",

View File

@ -4,12 +4,6 @@
```codecard
[{
"name": "Object Near",
"description": "Detect if objects are near.",
"cardType": "tutorial",
"url":"/tutorials/object-near",
"imageUrl":"/static/tutorials/object-near.png"
}, {
"name": "Security Alert",
"description": "Build an security alert using the Infrared Sensor.",
"cardType": "tutorial",
@ -20,5 +14,4 @@
## See Also
[Object Near?](/tutorials/object-near),
[Security Alert](/tutorials/security-alert)

View File

@ -0,0 +1,24 @@
# Infrared sensor
## Tutorials
```codecard
[{
"name": "Object Near",
"description": "Detect if objects are near.",
"cardType": "tutorial",
"url":"/tutorials/object-near",
"imageUrl":"/static/tutorials/object-near.png"
}, {
"name": "Wall Follower",
"description": "Follow a wall at a distance using the ultrasonic sensor and a proportional controller.",
"cardType": "tutorial",
"url":"/tutorials/wall-follower",
"imageUrl":"/static/tutorials/wall-follower.png"
}]
```
## See Also
[Object Near?](/tutorials/object-near),
[Wall Follower](/tutorials/wall-follower)

View File

@ -0,0 +1,191 @@
# Wall Follower
## Introduction @unplugged
This tutorial shows you how to use the ultrasonic sensor to
move a [EV3 Driving Base](https://le-www-live-s.legocdn.com/sc/media/lessons/mindstorms-ev3/building-instructions/ev3-rem-driving-base-79bebfc16bd491186ea9c9069842155e.pdf)
along a wall.
Your ultrasonic sensor should be placed horizontally, near the driving wheel, facing the wall.
## Step 1 Measure distance
Declare a new variable ``distance`` and store the distance from
the ultrasonic sensor on port 4.
```blocks
let distance = 0
forever(function () {
distance = sensors.ultrasonic4.distance()
})
```
## Step 2 Show distance
Use a ``||brick:show value||`` block to display the distance value on the screen.
This is **very** helpful when you are debugging your code on the robot.
Once your code is ready, download it to your robot and check that the measured distance looks ok.
```blocks
let distance = 0
forever(function () {
distance = sensors.ultrasonic4.distance()
brick.showValue("distance", distance, 1)
})
```
## Step 3 Goal
Declare a new variable ``goal`` and assign it to ``10`` in ``on start``.
The value should be the distance in centimeters between your robot and the wall.
```blocks
let goal = 0
goal = 10
```
## Step 4 Compute Error
Declare a new variable ``error`` and assign a difference between ``distance`` and ``goal``.
We will use this value to determine how much the robot needs to correct its trajectory.
```blocks
let distance = 0
let goal = 0
let error = 0
goal = 10
forever(function () {
distance = sensors.ultrasonic4.distance()
brick.showValue("distance", distance, 1)
error = distance - goal
brick.showValue("error", error, 2)
})
```
## Step 5 Show Error
Just like ``distance``, use ``||brick:show value||`` to display the value of the error (line 2).
This will allow you to debug your code while it is running on the robot.
Download your program to the robot and check that the error goes to ``0`` when
the robot is around 10cm from the wall.
```blocks
let distance = 0
let goal = 0
let error = 0
goal = 10
forever(function () {
distance = sensors.ultrasonic4.distance()
brick.showValue("distance", distance, 1)
error = distance - goal
brick.showValue("error", error, 2)
})
```
## Step 6 Kp
Declare a new variable ``kp`` and assign it to ``1``.
This number determines how to convert the error into a ``turn ratio`` for the steer block.
For starter, set it to 1 and we will go through the steps to tune its value later on.
As usual, also use ``||brick:show value||`` to display the value of ``kp`` on the screen (line 3).
```blocks
let distance = 0
let goal = 0
let error = 0
let kp = 0
goal = 10
kp = 1
forever(function () {
distance = sensors.ultrasonic4.distance()
brick.showValue("distance", distance, 1)
error = distance - goal
brick.showValue("error", error, 2)
brick.showValue("kp", kp, 3)
})
```
## Step 7 Turn ratio
Declare a new variable ``turnratio`` and store the product of ``error`` and ``kp`` in it.
Also use ``||brick:show value||`` to display its value on screen.
Download the program on the robot and try moving the robot around the wall. You should see
the value of ``turnratio`` change similarly to ``error``.
```blocks
let distance = 0
let goal = 0
let error = 0
let kp = 0
let turnratio = 0
goal = 10
kp = 1
forever(function () {
distance = sensors.ultrasonic4.distance()
brick.showValue("distance", distance, 1)
error = distance - goal
brick.showValue("error", error, 2)
brick.showValue("kp", kp, 3)
turnratio = error * kp
brick.showValue("turn", turnratio, 4)
})
```
## Step 8 Steering
Add a ``||motors:steer motors||`` block for ``large B+C`` at 35% and place the ``turnratio``
variable for the turn value.
Download the code to your robot and try it out. Does it follow the wall?...
Not really, this is because we need to tune the ``kp`` variable.
```blocks
let distance = 0
let goal = 0
let error = 0
let kp = 0
let turnratio = 0
goal = 10
kp = 1
forever(function () {
distance = sensors.ultrasonic4.distance()
brick.showValue("distance", distance, 1)
error = distance - goal
brick.showValue("error", error, 2)
brick.showValue("kp", kp, 3)
turnratio = error * kp
brick.showValue("turn", turnratio, 4)
motors.largeBC.steer(turnratio, 35)
})
```
## Step 9 Tuning kp
As mentioned in a previous step, we need to find the right value for kp so that the robot
follows the wall properly. This tuning can be tedious so we are going to the brick buttons
to speed up the process.
Add ``||brick:on button||`` blocks to handle the left and right button pressed. When left is pressed, change ``kp`` by ``-1``. When right is pressed, change ``kp`` by 1.
Download your code to the robot and change the values of ``kp`` until the robot follows the wall. (Tip try something around -5 / -10).
```blocks
let kp = 0
brick.buttonLeft.onEvent(ButtonEvent.Pressed, function () {
kp += -1
})
brick.buttonRight.onEvent(ButtonEvent.Pressed, function () {
kp += 1
})
```
## Step 10 @unplugged
Well done! Your robot is using the ultrasonic distance
to correct is trajectory using a proportional controller!
The robot will be more precise if it goes slow... Try using a variable
and the brick up and down events to control the speed as well.

View File

@ -1,13 +1,40 @@
const enum BatteryProperty {
//% block="level (%)"
Level,
//% block="current (I)"
Current,
//% block="voltage (V)"
Voltage
}
namespace brick {
/**
* Returns the current battery level
*/
//% blockId=brickBatteryLevel block="battery level"
//% group="More"
//% group="Battery"
//% help=brick/battery-level
//% deprecated blockHidden=1
export function batteryLevel(): number {
const info = sensors.internal.getBatteryInfo();
return info.current;
return info.level;
}
/**
* Returns information about the battery
*/
//% blockId=brickBatteryProperty block="battery %property"
//% group="Battery"
//% help=brick/battery-property
export function batteryInfo(property: BatteryProperty): number {
const info = sensors.internal.getBatteryInfo();
switch(property) {
case BatteryProperty.Level: return info.level;
case BatteryProperty.Current: return info.Ibatt;
case BatteryProperty.Voltage: return info.Vbatt;
default: return 0;
}
}
}

View File

@ -36,8 +36,17 @@ namespace sensors.internal {
let analogMM: MMap
let uartMM: MMap
let IICMM: MMap
let powerMM: MMap
let devcon: Buffer
let sensorInfos: SensorInfo[]
let sensorInfos: SensorInfo[];
let batteryInfo: {
CinCnt: number;
CoutCnt: number;
VinCnt: number;
};
let batteryVMin: number;
let batteryVMax: number;
class SensorInfo {
port: number
@ -71,10 +80,13 @@ namespace sensors.internal {
IICMM = control.mmap("/dev/lms_iic", IICOff.Size, 0)
if (!IICMM) control.fail("no iic sensor")
powerMM = control.mmap("/dev/lms_power", 2, 0)
unsafePollForChanges(500,
() => { return hashDevices(); },
(prev, curr) => { detectDevices();
});
(prev, curr) => {
detectDevices();
});
sensorInfos.forEach(info => {
unsafePollForChanges(50, () => {
if (info.sensor) return info.sensor._query()
@ -83,8 +95,7 @@ namespace sensors.internal {
if (info.sensor) info.sensor._update(prev, curr)
})
})
}
}
export function getActiveSensors(): Sensor[] {
init();
@ -110,18 +121,130 @@ namespace sensors.internal {
return manufacturer + sensorType;
}
export function getBatteryInfo(): { temp: number; current: number } {
init();
return {
temp: analogMM.getNumber(NumberFormat.Int16LE, AnalogOff.BatteryTemp),
current: Math.round(analogMM.getNumber(NumberFormat.Int16LE, AnalogOff.BatteryCurrent) / 10)
const ADC_REF = 5000 //!< [mV] maximal value on ADC
const ADC_RES = 4095 //!< [CNT] maximal count on ADC
// see c_ui.c
const SHUNT_IN = 0.11 // [Ohm]
const AMP_CIN = 22.0 // [Times]
const EP2_SHUNT_IN = 0.05 // [Ohm]
const EP2_AMP_CIN = 15.0 // [Times]
const SHUNT_OUT = 0.055 // [Ohm]
const AMP_COUT = 19.0 // [Times]
const VCE = 0.05 // [V]
const AMP_VIN = 0.5 // [Times]
const AVR_CIN = 300
const AVR_COUT = 30
const AVR_VIN = 30
// lms2012
const BATT_INDICATOR_HIGH = 7500 //!< Battery indicator high [mV]
const BATT_INDICATOR_LOW = 6200 //!< Battery indicator low [mV]
const ACCU_INDICATOR_HIGH = 7500 //!< Rechargeable battery indicator high [mV]
const ACCU_INDICATOR_LOW = 7100 //!< Rechargeable battery indicator low [mV]
function CNT_V(C: number) {
return ((C * ADC_REF) / (ADC_RES * 1000.0))
}
function updateBatteryInfo() {
let CinCnt = analogMM.getNumber(NumberFormat.Int16LE, AnalogOff.BatteryCurrent);
let CoutCnt = analogMM.getNumber(NumberFormat.Int16LE, AnalogOff.MotorCurrent);
let VinCnt = analogMM.getNumber(NumberFormat.Int16LE, AnalogOff.Cell123456);
if (!batteryInfo) {
batteryVMin = BATT_INDICATOR_LOW;
batteryVMax = BATT_INDICATOR_HIGH;
if (powerMM) {
const accu = powerMM.getNumber(NumberFormat.UInt8LE, 0);
if (accu > 0) {
control.dmesg("rechargeable battery")
batteryVMin = ACCU_INDICATOR_LOW;
batteryVMax = ACCU_INDICATOR_HIGH;
}
}
batteryInfo = {
CinCnt: CinCnt,
CoutCnt: CoutCnt,
VinCnt: VinCnt
};
// update in background
control.runInParallel(() => forever(updateBatteryInfo));
} else {
CinCnt = batteryInfo.CinCnt = ((batteryInfo.CinCnt * (AVR_CIN - 1)) + CinCnt) / AVR_CIN;
CoutCnt = batteryInfo.CoutCnt = ((batteryInfo.CoutCnt * (AVR_COUT - 1)) + CoutCnt) / AVR_COUT;
VinCnt = batteryInfo.VinCnt = ((batteryInfo.VinCnt * (AVR_VIN - 1)) + VinCnt) / AVR_VIN;
}
}
export function getBatteryInfo(): {
level: number;
Ibatt: number,
Vbatt: number,
Imotor: number
} {
init();
if (!batteryInfo) updateBatteryInfo();
const CinCnt = batteryInfo.CinCnt;
const CoutCnt = batteryInfo.CoutCnt;
const VinCnt = batteryInfo.VinCnt;
/*
void cUiUpdatePower(void)
{
#ifndef Linux_X86
DATAF CinV;
DATAF CoutV;
if ((UiInstance.Hw == FINAL) || (UiInstance.Hw == FINALB))
{
CinV = CNT_V(UiInstance.CinCnt) / AMP_CIN;
UiInstance.Vbatt = (CNT_V(UiInstance.VinCnt) / AMP_VIN) + CinV + VCE;
UiInstance.Ibatt = CinV / SHUNT_IN;
CoutV = CNT_V(UiInstance.CoutCnt) / AMP_COUT;
UiInstance.Imotor = CoutV / SHUNT_OUT;
}
else
{
CinV = CNT_V(UiInstance.CinCnt) / EP2_AMP_CIN;
UiInstance.Vbatt = (CNT_V(UiInstance.VinCnt) / AMP_VIN) + CinV + VCE;
UiInstance.Ibatt = CinV / EP2_SHUNT_IN;
UiInstance.Imotor = 0;
}
#endif
#ifdef DEBUG_TEMP_SHUTDOWN
UiInstance.Vbatt = 7.0;
UiInstance.Ibatt = 5.0;
#endif
}
*/
const CinV = CNT_V(CinCnt) / AMP_CIN;
const Vbatt = CNT_V(VinCnt) / AMP_VIN + CinV + VCE;
const Ibatt = CinV / SHUNT_IN;
const CoutV = CNT_V(CoutCnt) / AMP_COUT;
const Imotor = CoutV / SHUNT_OUT;
const level = Math.max(0, Math.min(100, Math.floor((Vbatt * 1000.0 - batteryVMin)
/ (batteryVMax - batteryVMin) * 100)));
return {
level: level,
Vbatt: Vbatt,
Ibatt: Ibatt,
Imotor: Imotor
};
}
function hashDevices(): number {
const conns = analogMM.slice(AnalogOff.InConn, DAL.NUM_INPUTS)
let r = 0;
for(let i = 0; i < conns.length; ++i) {
for (let i = 0; i < conns.length; ++i) {
r = (r << 8 | conns[i]);
}
return r;

View File

@ -36,6 +36,13 @@ enum MoveUnit {
MilliSeconds
}
enum MovePhase {
//% block="acceleration"
Acceleration,
//% block="deceleration"
Deceleration
}
namespace motors {
let pwmMM: MMap
let motorMM: MMap
@ -226,6 +233,7 @@ namespace motors {
//% weight=1 blockGap=8
//% group="Properties"
//% millis.defl=200 millis.min=0 millis.max=500
//% help=motors/motor/set-brake-settle-time
setBrakeSettleTime(millis: number) {
this.init();
// ensure in [0,500]
@ -279,7 +287,7 @@ namespace motors {
const r: MoveSchedule = {
speed: Math.clamp(-100, 100, speed >> 0),
useSteps: true,
steps: [step1, step2, step3]
steps: [step1 || 0, step2 || 0, step3 || 0]
}
let scale = 1;
switch (unit) {
@ -352,18 +360,20 @@ namespace motors {
/**
* Schedules a run of the motor with an acceleration, constant and deceleration phase.
* @param speed the speed from ``100`` full forward to ``-100`` full backward, eg: 50
* @param acceleration acceleration phase measured distance or rotation
* @param value measured distance or rotation
* @param deceleration deceleration phase measured distance or rotation
* @param unit (optional) unit of the value
* @param value measured distance or rotation, eg: 500
* @param unit (optional) unit of the value, eg: MoveUnit.MilliSeconds
* @param acceleration acceleration phase measured distance or rotation, eg: 500
* @param deceleration deceleration phase measured distance or rotation, eg: 500
*/
//% blockId=motorSchedule block="schedule %motor at %speed=motorSpeedPicker|\\%|for %acceleration|%value|%deceleration||%unit"
//% blockId=motorSchedule block="ramp %motor at %speed=motorSpeedPicker|\\%|for %value|%unit||accelerate %acceleration|decelerate %deceleration"
//% weight=99 blockGap=8
//% group="Move"
//% motor.fieldEditor="motors"
//% help=motors/motor/schedule
//% help=motors/motor/ramp
//% inlineInputMode=inline
schedule(speed: number, acceleration: number, value: number, deceleration: number, unit: MoveUnit = MoveUnit.MilliSeconds) {
//% expandableArgumentMode=toggle
//% value.defl=500
ramp(speed: number, value: number = 500, unit: MoveUnit = MoveUnit.MilliSeconds, acceleration?: number, deceleration?: number) {
this.init();
const schedule = this.normalizeSchedule(speed, acceleration, value, deceleration, unit);
// stop if speed is 0
@ -386,50 +396,41 @@ namespace motors {
* Specifies the amount of rotation or time for the acceleration
* of run commands.
*/
//% blockId=outputMotorsetRunAcceleration block="set %motor|run acceleration to $value||$unit"
//% blockId=outputMotorsetRunRamp block="set %motor|run %ramp to $value||$unit"
//% motor.fieldEditor="motors"
//% weight=21 blockGap=8
//% group="Properties"
//% help=motors/motor/set-run-acceleration-ramp
setRunAccelerationRamp(value: number, unit: MoveUnit = MoveUnit.MilliSeconds) {
//% help=motors/motor/set-run-phase
setRunPhase(phase: MovePhase, value: number, unit: MoveUnit = MoveUnit.MilliSeconds) {
let temp: number;
switch (unit) {
case MoveUnit.Rotations:
this._accelerationSteps = Math.max(0, (value * 360) | 0);
temp = Math.max(0, (value * 360) | 0);
if (phase == MovePhase.Acceleration)
this._accelerationSteps = temp;
else
this._decelerationSteps = temp;
break;
case MoveUnit.Degrees:
this._accelerationSteps = Math.max(0, value | 0);
temp = Math.max(0, value | 0);
if (phase == MovePhase.Acceleration)
this._accelerationSteps = temp;
else
this._decelerationSteps = temp;
break;
case MoveUnit.Seconds:
this._accelerationTime = Math.max(0, (value * 1000) | 0);
temp = Math.max(0, (value * 1000) | 0);
if (phase == MovePhase.Acceleration)
this._accelerationTime = temp;
else
this._decelerationTime = temp;
break;
case MoveUnit.MilliSeconds:
this._accelerationTime = Math.max(0, value | 0);
break;
}
}
/**
* Specifies the amount of rotation or time for the acceleration
* of run commands.
*/
//% blockId=outputMotorsetRunDeceleration block="set %motor|run deceleration ramp to $value||$unit"
//% motor.fieldEditor="motors"
//% weight=20 blockGap=8
//% group="Properties"
//% help=motors/motor/set-run-deceleration-ramp
setRunDecelerationRamp(value: number, unit: MoveUnit = MoveUnit.MilliSeconds) {
switch (unit) {
case MoveUnit.Rotations:
this._decelerationSteps = Math.max(0, (value * 360) | 0);
break;
case MoveUnit.Degrees:
this._decelerationSteps = Math.max(0, value | 0);
break;
case MoveUnit.Seconds:
this._decelerationTime = Math.max(0, (value * 1000) | 0);
break;
case MoveUnit.MilliSeconds:
this._decelerationTime = Math.max(0, value | 0);
temp = Math.max(0, value | 0);
if (phase == MovePhase.Acceleration)
this._accelerationTime = temp;
else
this._decelerationTime = temp;
break;
}
}

View File

@ -1,6 +1,6 @@
//% color="#68C3E2" weight=100 icon="\uf106"
//% groups='["Buttons", "Screen"]'
//% groups='["Buttons", "Screen", "Battery"]'
//% labelLineWidth=60
namespace brick {
}

View File

@ -1,6 +1,6 @@
{
"name": "pxt-ev3",
"version": "1.1.17",
"version": "1.1.20",
"description": "LEGO MINDSTORMS EV3 for Microsoft MakeCode",
"private": false,
"keywords": [

View File

@ -13,6 +13,7 @@
"Motor Tutorials": "tutorials/motors",
"Touch Sensor Tutorials": "tutorials/touch-sensor",
"Color Sensor Tutorials": "tutorials/color-sensor",
"Ultrasonic Sensor Tutorials": "tutorials/ultrasonic-sensor",
"Infrared Sensor Tutorials": "tutorials/infrared-sensor",
"Design Engineering": "design-engineering",
"Coding": "coding",