enum Output { //% block="A" A = 0x01, //% block="B" B = 0x02, //% block="C" C = 0x04, //% block="D" D = 0x08, //% block="B+C" BC = Output.B | Output.C, //% block="A+B" AB = Output.A | Output.B, //% block="C+D" CD = Output.C | Output.D, //% block="A+D" AD = Output.A | Output.D, //% block="All" ALL = 0x0f } enum OutputType { None = 0, Tacho = 7, MiniTacho = 8, } enum MoveUnit { //% block="rotations" Rotations, //% block="degrees" Degrees, //% block="seconds" Seconds, //% block="milliseconds" MilliSeconds } namespace motors { let pwmMM: MMap let motorMM: MMap const enum MotorDataOff { TachoCounts = 0, // int32 Speed = 4, // int8 Padding = 5, // int8[3] TachoSensor = 8, // int32 Size = 12 } function init() { if (pwmMM) return pwmMM = control.mmap("/dev/lms_pwm", 0, 0) if (!pwmMM) control.fail("no PWM file") motorMM = control.mmap("/dev/lms_motor", MotorDataOff.Size * DAL.NUM_OUTPUTS, 0) if (!motorMM) control.fail("no motor file") resetAllMotors() const buf = output.createBuffer(1) buf[0] = DAL.opProgramStart writePWM(buf) } /** * Sends a command to the motors device * @param buf the command buffer */ //% export function writePWM(buf: Buffer): void { init() pwmMM.write(buf) } /** * Sends and receives a message from the motors device * @param buf message buffer */ //% export function readPWM(buf: Buffer): void { init() pwmMM.read(buf); } /** * Allocates a message buffer * @param out ports * @param cmd command id * @param addSize required additional bytes */ //% export function mkCmd(out: Output, cmd: number, addSize: number) { const b = output.createBuffer(2 + addSize) b.setNumber(NumberFormat.UInt8LE, 0, cmd) b.setNumber(NumberFormat.UInt8LE, 1, out) return b } export function outputToName(out: Output): string { let r = ""; for (let i = 0; i < DAL.NUM_OUTPUTS; ++i) { if (out & (1 << i)) { if (r.length > 0) r += "+"; r += "ABCD"[i]; } } return r; } /** * Stops all motors */ //% blockId=motorStopAll block="stop all motors" //% weight=1 //% group="Move" //% help=motors/stop-all export function stopAll() { const b = mkCmd(Output.ALL, DAL.opOutputStop, 0) writePWM(b) } /** * Resets all motors */ //% group="Move" export function resetAllMotors() { reset(Output.ALL) } //% fixedInstances export class MotorBase extends control.Component { protected _port: Output; protected _portName: string; protected _brake: boolean; private _pauseOnRun: boolean; private _initialized: boolean; private _init: () => void; private _run: (speed: number) => void; private _move: (steps: boolean, stepsOrTime: number, speed: number) => void; protected static output_types: number[] = [0x7, 0x7, 0x7, 0x7]; constructor(port: Output, init: () => void, run: (speed: number) => void, move: (steps: boolean, stepsOrTime: number, speed: number) => void) { super(); this._port = port; this._portName = outputToName(this._port); this._brake = false; this._pauseOnRun = true; this._initialized = false; this._init = init; this._run = run; this._move = move; } /** * Lazy initialization code */ protected init() { if (!this._initialized) { this._initialized = true; this._init(); } } /** * Sets the automatic brake on or off when the motor is off * @param brake a value indicating if the motor should break when off */ //% blockId=outputMotorSetBrakeMode block="set %motor|brake %brake=toggleOnOff" //% motor.fieldEditor="motors" //% weight=60 blockGap=8 //% group="Properties" //% help=motors/motor/set-brake setBrake(brake: boolean) { this.init(); this._brake = brake; } /** * Indicates to pause while a motor moves for a given distance or duration. * @param value true to pause; false to continue the program execution */ //% blockId=outputMotorSetPauseMode block="set %motor|pause on run %brake=toggleOnOff" //% motor.fieldEditor="motors" //% weight=60 blockGap=8 //% group="Properties" setPauseOnRun(value: boolean) { this.init(); this._pauseOnRun = value; } /** * Inverts the motor polarity */ //% blockId=motorSetInverted block="set %motor|inverted %reversed=toggleOnOff" //% motor.fieldEditor="motors" //% weight=59 blockGap=8 //% group="Properties" //% help=motors/motor/set-inverted setInverted(inverted: boolean) { this.init(); const b = mkCmd(this._port, DAL.opOutputPolarity, 1) b.setNumber(NumberFormat.Int8LE, 2, inverted ? 0 : 1); writePWM(b) } /** * Stops the motor(s). */ //% weight=6 blockGap=8 //% group="Move" //% help=motors/motor/stop //% blockId=motorStop block="stop %motors|" //% motors.fieldEditor="motors" stop() { this.init(); stop(this._port, this._brake); this.settle(); } protected settle() { // if we've recently completed a motor command with brake // allow 500ms for robot to settle if (this._brake) pause(500); } protected pauseOnRun(stepsOrTime: number) { if (stepsOrTime && this._pauseOnRun) { // wait till motor is done with this work this.pauseUntilReady(); // allow robot to settle this.settle(); } } /** * Resets the motor(s). */ //% weight=5 //% group="Move" //% help=motors/motor/reset //% blockId=motorReset block="reset %motors|" //% motors.fieldEditor="motors" reset() { this.init(); reset(this._port); } /** * Runs the motor at a given speed for limited time or distance. * @param speed the speed from ``100`` full forward to ``-100`` full backward, eg: 50 * @param value (optional) measured distance or rotation * @param unit (optional) unit of the value */ //% blockId=motorRun block="run %motor at %speed=motorSpeedPicker|\\%||for %value %unit" //% weight=100 blockGap=8 //% group="Move" //% motor.fieldEditor="motors" //% expandableArgumentMode=toggle //% help=motors/motor/run run(speed: number, value: number = 0, unit: MoveUnit = MoveUnit.MilliSeconds) { this.init(); speed = Math.clamp(-100, 100, speed >> 0); // stop if speed is 0 if (!speed) { this.stop(); return; } // special: 0 is infinity if (value == 0) { this._run(speed); return; } // timed motor moves let useSteps: boolean; let stepsOrTime: number; switch (unit) { case MoveUnit.Rotations: stepsOrTime = (value * 360) >> 0; useSteps = true; break; case MoveUnit.Degrees: stepsOrTime = value >> 0; useSteps = true; break; case MoveUnit.Seconds: stepsOrTime = (value * 1000) >> 0; useSteps = false; break; default: stepsOrTime = value; useSteps = false; break; } this._move(useSteps, stepsOrTime, speed); this.pauseOnRun(stepsOrTime); } /** * Returns a value indicating if the motor is still running a previous command. */ //% group="Sensors" isReady(): boolean { this.init(); const buf = mkCmd(this._port, DAL.opOutputTest, 2); readPWM(buf) const flags = buf.getNumber(NumberFormat.UInt8LE, 2); return (~flags & this._port) == this._port; } /** * Pauses the execution until the previous command finished. * @param timeOut optional maximum pausing time in milliseconds */ //% blockId=motorPauseUntilRead block="pause until %motor|ready" //% motor.fieldEditor="motors" //% weight=90 //% group="Move" pauseUntilReady(timeOut?: number) { pauseUntil(() => this.isReady(), timeOut); } protected setOutputType(large: boolean) { for (let i = 0; i < DAL.NUM_OUTPUTS; ++i) { if (this._port & (1 << i)) { // (0x07: Large motor, Medium motor = 0x08) MotorBase.output_types[i] = large ? 0x07 : 0x08; } } MotorBase.setTypes(); } // Note, we are having to create our own buffer here as mkCmd creates a buffer with a command // In the case of opOutputSetType, it expects the arguments to be opOutputSetType [type0, type1, type2, type3] static setTypes() { const b = output.createBuffer(5) b.setNumber(NumberFormat.UInt8LE, 0, DAL.opOutputSetType) b.setNumber(NumberFormat.Int8LE, 1, MotorBase.output_types[0]); b.setNumber(NumberFormat.Int8LE, 2, MotorBase.output_types[1]); b.setNumber(NumberFormat.Int8LE, 3, MotorBase.output_types[2]); b.setNumber(NumberFormat.Int8LE, 4, MotorBase.output_types[3]); writePWM(b) } } //% fixedInstances export class Motor extends MotorBase { private _large: boolean; private _regulated: boolean; constructor(port: Output, large: boolean) { super(port, () => this.__init(), (speed) => this.__setSpeed(speed), (steps, stepsOrTime, speed) => this.__move(steps, stepsOrTime, speed)); this._large = large; this._regulated = true; this.markUsed(); } markUsed() { motors.__motorUsed(this._port, this._large); } private __init() { this.setOutputType(this._large); } private __setSpeed(speed: number) { const b = mkCmd(this._port, this._regulated ? DAL.opOutputSpeed : DAL.opOutputPower, 1) b.setNumber(NumberFormat.Int8LE, 2, speed) writePWM(b) if (speed) { writePWM(mkCmd(this._port, DAL.opOutputStart, 0)) } } private __move(steps: boolean, stepsOrTime: number, speed: number) { control.dmesg("motor.__move") const p = { useSteps: steps, step1: 0, step2: stepsOrTime, step3: 0, speed: this._regulated ? speed : undefined, power: this._regulated ? undefined : speed, useBrake: this._brake }; control.dmesg("motor.1") step(this._port, p) control.dmesg("motor.__move end") } /** * Indicates if the motor speed should be regulated. Default is true. * @param value true for regulated motor */ //% blockId=outputMotorSetRegulated block="set %motor|regulated %value=toggleOnOff" //% motor.fieldEditor="motors" //% weight=58 //% group="Properties" //% help=motors/motor/set-regulated setRegulated(value: boolean) { this._regulated = value; } /** * Gets motor actual speed. * @param motor the port which connects to the motor */ //% blockId=motorSpeed block="%motor|speed" //% motor.fieldEditor="motors" //% weight=72 //% blockGap=8 //% group="Counters" //% help=motors/motor/speed speed(): number { this.init(); return getMotorData(this._port).actualSpeed; } /** * Gets motor angle. * @param motor the port which connects to the motor */ //% blockId=motorAngle block="%motor|angle" //% motor.fieldEditor="motors" //% weight=70 //% blockGap=8 //% group="Counters" //% help=motors/motor/angle angle(): number { this.init(); return getMotorData(this._port).count; } /** * Clears the motor count */ //% blockId=motorClearCount block="clear %motor|counters" //% motor.fieldEditor="motors" //% weight=68 //% blockGap=8 //% group="Counters" //% help=motors/motor/clear-counts clearCounts() { this.init(); const b = mkCmd(this._port, DAL.opOutputClearCount, 0) writePWM(b) for (let i = 0; i < DAL.NUM_OUTPUTS; ++i) { if (this._port & (1 << i)) { motorMM.setNumber(NumberFormat.Int32LE, i * MotorDataOff.Size + MotorDataOff.TachoSensor, 0) } } } /** * Returns the status of the motor */ //% toString(): string { return `${this._large ? "" : "M"}${this._portName} ${this.speed()}% ${this.angle()}>`; } } //% whenUsed fixedInstance block="large motor A" jres=icons.portA export const largeA = new Motor(Output.A, true); //% whenUsed fixedInstance block="large motor B" jres=icons.portB export const largeB = new Motor(Output.B, true); //% whenUsed fixedInstance block="large motor C" jres=icons.portC export const largeC = new Motor(Output.C, true); //% whenUsed fixedInstance block="large motor D" jres=icons.portD export const largeD = new Motor(Output.D, true); //% whenUsed fixedInstance block="medium motor A" jres=icons.portA export const mediumA = new Motor(Output.A, false); //% whenUsed fixedInstance block="medium motor B" jres=icons.portB export const mediumB = new Motor(Output.B, false); //% whenUsed fixedInstance block="medium motor C" jres=icons.portC export const mediumC = new Motor(Output.C, false); //% whenUsed fixedInstance block="medium motor D" jres=icons.portD export const mediumD = new Motor(Output.D, false); //% fixedInstances export class SynchedMotorPair extends MotorBase { constructor(ports: Output) { super(ports, () => this.__init(), (speed) => this.__setSpeed(speed), (steps, stepsOrTime, speed) => this.__move(steps, stepsOrTime, speed)); this.markUsed(); } markUsed() { motors.__motorUsed(this._port, true); } private __init() { this.setOutputType(true); } private __setSpeed(speed: number) { syncMotors(this._port, { speed: speed, turnRatio: 0, // same speed useBrake: !!this._brake }) } private __move(steps: boolean, stepsOrTime: number, speed: number) { syncMotors(this._port, { useSteps: steps, speed: speed, turnRatio: 0, // same speed stepsOrTime: stepsOrTime, useBrake: this._brake }); } /** * The Move Tank block can make a robot drive forward, backward, turn, or stop. * Use the Move Tank block for robot vehicles that have two Large Motors, * with one motor driving the left side of the vehicle and the other the right side. * You can make the two motors go at different speeds or in different directions * to make your robot turn. * @param speedLeft the speed on the left motor, eg: 50 * @param speedRight the speed on the right motor, eg: 50 * @param value (optional) move duration or rotation * @param unit (optional) unit of the value */ //% blockId=motorPairTank block="tank **motors** %motors %speedLeft=motorSpeedPicker|\\% %speedRight=motorSpeedPicker|\\%||for %value %unit" //% motors.fieldEditor="ports" //% weight=96 blockGap=8 //% inlineInputMode=inline //% group="Move" //% expandableArgumentMode=toggle //% help=motors/synced/tank tank(speedLeft: number, speedRight: number, value: number = 0, unit: MoveUnit = MoveUnit.MilliSeconds) { this.init(); speedLeft = Math.clamp(-100, 100, speedLeft >> 0); speedRight = Math.clamp(-100, 100, speedRight >> 0); const speed = Math.abs(speedLeft) > Math.abs(speedRight) ? speedLeft : speedRight; const turnRatio = speedLeft == speed ? (100 - speedRight / speedLeft * 100) : (speedLeft / speedRight * 100 - 100); this.steer(turnRatio, speed, value, unit); } /** * Turns the motor and the follower motor by a number of rotations * @param turnRatio the ratio of power sent to the follower motor, from ``-200`` to ``200``, eg: 0 * @param speed the speed from ``100`` full forward to ``-100`` full backward, eg: 50 * @param value (optional) move duration or rotation * @param unit (optional) unit of the value */ //% blockId=motorPairSteer block="steer **motors** %chassis turn ratio %turnRatio=motorTurnRatioPicker speed %speed=motorSpeedPicker|\\%||for %value %unit" //% chassis.fieldEditor="ports" //% weight=95 //% turnRatio.min=-200 turnRatio=200 //% inlineInputMode=inline //% group="Move" //% expandableArgumentMode=toggle //% help=motors/synced/steer steer(turnRatio: number, speed: number, value: number = 0, unit: MoveUnit = MoveUnit.MilliSeconds) { this.init(); speed = Math.clamp(-100, 100, speed >> 0); if (!speed) { stop(this._port, this._brake); return; } turnRatio = Math.clamp(-200, 200, turnRatio >> 0); let useSteps: boolean; let stepsOrTime: number; switch (unit) { case MoveUnit.Rotations: stepsOrTime = (value * 360) >> 0; useSteps = true; break; case MoveUnit.Degrees: stepsOrTime = value >> 0; useSteps = true; break; case MoveUnit.Seconds: stepsOrTime = (value * 1000) >> 0; useSteps = false; break; default: stepsOrTime = value >> 0; useSteps = false; break; } syncMotors(this._port, { useSteps: useSteps, speed: speed, turnRatio: turnRatio, stepsOrTime: stepsOrTime, useBrake: this._brake }); this.pauseOnRun(stepsOrTime); } /** * Returns the name(s) of the motor */ //% toString(): string { this.init(); let r = outputToName(this._port); for (let i = 0; i < DAL.NUM_OUTPUTS; ++i) { if (this._port & (1 << i)) { r += ` ${getMotorData(1 << i).actualSpeed}%` } } return r; } } //% whenUsed fixedInstance block="B+C" jres=icons.portBC export const largeBC = new SynchedMotorPair(Output.BC); //% whenUsed fixedInstance block="A+D" jres=icons.portAD export const largeAD = new SynchedMotorPair(Output.AD); //% whenUsed fixedInstance block="A+B" jres=icons.portAB export const largeAB = new SynchedMotorPair(Output.AB); //% whenUsed fixedInstance block="C+D" jres=icons.portCD export const largeCD = new SynchedMotorPair(Output.CD); function reset(out: Output) { writePWM(mkCmd(out, DAL.opOutputReset, 0)) writePWM(mkCmd(out, DAL.opOutputClearCount, 0)) } function outOffset(out: Output) { for (let i = 0; i < DAL.NUM_OUTPUTS; ++i) { if (out & (1 << i)) return i * MotorDataOff.Size } return 0 } export interface MotorData { actualSpeed: number; // -100..+100 tachoCount: number; count: number; } // only a single output at a time function getMotorData(out: Output): MotorData { init() const buf = motorMM.slice(outOffset(out), MotorDataOff.Size) return { actualSpeed: buf.getNumber(NumberFormat.Int8LE, MotorDataOff.Speed), tachoCount: buf.getNumber(NumberFormat.Int32LE, MotorDataOff.TachoCounts), count: buf.getNumber(NumberFormat.Int32LE, MotorDataOff.TachoSensor), } } export function getAllMotorData(): MotorData[] { init(); return [Output.A, Output.B, Output.C, Output.D].map(out => getMotorData(out)); } interface SyncOptions { useSteps?: boolean; speed: number; turnRatio: number; stepsOrTime?: number; useBrake?: boolean; } function syncMotors(out: Output, opts: SyncOptions) { const cmd = opts.useSteps ? DAL.opOutputStepSync : DAL.opOutputTimeSync; const b = mkCmd(out, cmd, 11); const speed = Math.clamp(-100, 100, opts.speed); const turnRatio = Math.clamp(-200, 200, opts.turnRatio); b.setNumber(NumberFormat.Int8LE, 2, speed) // note that b[3] is padding b.setNumber(NumberFormat.Int16LE, 4 + 4 * 0, turnRatio) // b[6], b[7] is padding b.setNumber(NumberFormat.Int32LE, 4 + 4 * 1, opts.stepsOrTime || 0) b.setNumber(NumberFormat.Int8LE, 4 + 4 * 2, opts.useBrake ? 1 : 0) writePWM(b) } interface StepOptions { power?: number; speed?: number; // either speed or power has to be present step1: number; step2: number; step3: number; useSteps?: boolean; // otherwise use milliseconds useBrake?: boolean; } function start(out: Output) { const b = mkCmd(out, DAL.opOutputStart, 0) writePWM(b); } function stop(out: Output, brake: boolean) { const b = mkCmd(out, DAL.opOutputStop, 1) b.setNumber(NumberFormat.UInt8LE, 2, brake ? 1 : 0) writePWM(b); } function step(out: Output, opts: StepOptions) { control.dmesg('step') let op = opts.useSteps ? DAL.opOutputStepSpeed : DAL.opOutputTimeSpeed let speed = opts.speed if (undefined == speed) { speed = opts.power op = opts.useSteps ? DAL.opOutputStepPower : DAL.opOutputTimePower if (undefined == speed) return } speed = Math.clamp(-100, 100, speed) control.dmesg('speed: ' + speed) let b = mkCmd(out, op, 15) control.dmesg('STEP 5') b.setNumber(NumberFormat.Int8LE, 2, speed) // note that b[3] is padding control.dmesg('STEP 1') b.setNumber(NumberFormat.Int32LE, 4 + 4 * 0, opts.step1) control.dmesg('STEP 2') b.setNumber(NumberFormat.Int32LE, 4 + 4 * 1, opts.step2) control.dmesg('STEP 3') b.setNumber(NumberFormat.Int32LE, 4 + 4 * 2, opts.step3) control.dmesg('STEP 4') control.dmesg('br ' + opts.useBrake); const br = !!opts.useBrake ? 1 : 0; control.dmesg('Step 4.5 ' + br) b.setNumber(NumberFormat.Int8LE, 4 + 4 * 3, br) control.dmesg('STEP 5') writePWM(b) control.dmesg('end step') } }