namespace sensors.internal { //% shim=pxt::unsafePollForChanges export function unsafePollForChanges( periodMs: number, query: () => number, changeHandler: (prev: number, curr: number) => void ) { // This is implemented in C++ without blocking the regular JS when query() is runnning // which is generally unsafe. Query should not update globally visible state, and cannot // call any yielding functions, like sleep(). // This is implementation for the simulator. control.runInParallel(() => { let prev = query() changeHandler(prev, prev) while (true) { pause(periodMs) let curr = query() if (prev !== curr) { changeHandler(prev, curr) prev = curr } } }) } let analogMM: MMap let uartMM: MMap let devcon: Buffer let sensorInfos: SensorInfo[] class SensorInfo { port: number sensor: Sensor sensors: Sensor[] connType: number devType: number constructor(p: number) { this.port = p this.connType = DAL.CONN_NONE this.devType = DAL.DEVICE_TYPE_NONE this.sensors = [] } } function init() { if (sensorInfos) return sensorInfos = [] for (let i = 0; i < DAL.NUM_INPUTS; ++i) sensorInfos.push(new SensorInfo(i)) devcon = output.createBuffer(DevConOff.Size) analogMM = control.mmap("/dev/lms_analog", AnalogOff.Size, 0) if (!analogMM) control.fail("no analog sensor") uartMM = control.mmap("/dev/lms_uart", UartOff.Size, 0) if (!uartMM) control.fail("no uart sensor") forever(() => { detectDevices() pause(500) }) for (let info_ of sensorInfos) { let info = info_ unsafePollForChanges(50, () => { if (info.sensor) return info.sensor._query() return 0 }, (prev, curr) => { if (info.sensor) info.sensor._update(prev, curr) }) } } export function getActiveSensors(): Sensor[] { init(); return sensorInfos.filter(si => si.sensor && si.sensor.isActive()).map(si => si.sensor); } function readUartInfo(port: number, mode: number) { let buf = output.createBuffer(UartCtlOff.Size) buf[UartCtlOff.Port] = port buf[UartCtlOff.Mode] = mode uartMM.ioctl(IO.UART_READ_MODE_INFO, buf) return buf //let info = `t:${buf[TypesOff.Type]} c:${buf[TypesOff.Connection]} m:${buf[TypesOff.Mode]} n:${buf.slice(0, 12).toHex()}` //serial.writeLine("UART " + port + " / " + mode + " - " + info) } export function getBatteryInfo(): { temp: number; current: number } { init(); return { temp: analogMM.getNumber(NumberFormat.Int16LE, AnalogOff.BatteryTemp), current: Math.round(analogMM.getNumber(NumberFormat.Int16LE, AnalogOff.BatteryCurrent) / 10) } } function detectDevices() { let conns = analogMM.slice(AnalogOff.InConn, DAL.NUM_INPUTS) let numChanged = 0 for (let info of sensorInfos) { let newConn = conns[info.port] if (newConn == info.connType) continue numChanged++ info.connType = newConn info.devType = DAL.DEVICE_TYPE_NONE if (newConn == DAL.CONN_INPUT_UART) { control.dmesg(`new UART connection at ${info.port}`) setUartMode(info.port, 0) let uinfo = readUartInfo(info.port, 0) info.devType = uinfo[TypesOff.Type] control.dmesg(`UART type ${info.devType}`) } else if (newConn == DAL.CONN_INPUT_DUMB) { control.dmesg(`new DUMB connection at ${info.port}`) // TODO? for now assume touch info.devType = DAL.DEVICE_TYPE_TOUCH } else if (newConn == DAL.CONN_NONE || newConn == 0) { control.dmesg(`disconnect at ${info.port}`) } else { control.dmesg(`unknown connection type: ${newConn} at ${info.port}`) } } if (numChanged == 0) return for (let si of sensorInfos) { if (si.sensor && si.sensor._deviceType() != si.devType) { si.sensor = null } if (si.devType != DAL.DEVICE_TYPE_NONE) { // TODO figure out compiler problem when '|| null' is added here! si.sensor = si.sensors.filter(s => s._deviceType() == si.devType)[0] if (si.sensor == null) { control.dmesg(`sensor not found for type=${si.devType} at ${si.port}`) } else { control.dmesg(`sensor connected type=${si.devType} at ${si.port}`) si.sensor._activated() } } } } export class Sensor extends control.Component { protected _port: number // this is 0-based constructor(port_: number) { super() if (!(1 <= port_ && port_ <= DAL.NUM_INPUTS)) control.panic(120) this._port = port_ - 1 init() sensorInfos[this._port].sensors.push(this) this.markUsed(); } markUsed() { sensors.__sensorUsed(this._port, this._deviceType()); } _activated() { } // 1-based port() { return this._port + 1 } isActive() { return sensorInfos[this._port].sensor == this } _query() { return 0 } _update(prev: number, curr: number) { } _deviceType() { return 0 } } export class AnalogSensor extends Sensor { constructor(port: number) { super(port) } _readPin6() { if (!this.isActive()) return 0 return analogMM.getNumber(NumberFormat.Int16LE, AnalogOff.InPin6 + 2 * this._port) } } export class UartSensor extends Sensor { protected mode: number // the mode user asked for protected realmode: number // the mode the hardware is in constructor(port: number) { super(port) this.mode = 0 this.realmode = -1 } _activated() { this.realmode = 0 // uartReset(this.port) // TODO is it ever needed? this._setMode(this.mode) } protected _setMode(m: number) { //control.dmesg(`_setMode p=${this.port} m: ${this.realmode} -> ${m}`) let v = m | 0 this.mode = v if (!this.isActive()) return if (this.realmode != this.mode) { this.realmode = v setUartMode(this._port, v) } } getBytes(): Buffer { return getUartBytes(this.isActive() ? this._port : -1) } getNumber(fmt: NumberFormat, off: number) { if (!this.isActive()) return 0 return getUartNumber(fmt, off, this._port) } reset() { if (this.isActive()) uartReset(this._port); this.realmode = 0; } } function uartReset(port: number) { if (port < 0) return control.dmesg(`UART reset at ${port}`) devcon.setNumber(NumberFormat.Int8LE, DevConOff.Connection + port, DAL.CONN_NONE) devcon.setNumber(NumberFormat.Int8LE, DevConOff.Type + port, 0) devcon.setNumber(NumberFormat.Int8LE, DevConOff.Mode + port, 0) uartMM.ioctl(IO.UART_SET_CONN, devcon) } function getUartStatus(port: number) { if (port < 0) return 0 return uartMM.getNumber(NumberFormat.Int8LE, UartOff.Status + port) } function waitNonZeroUartStatus(port: number) { while (true) { if (port < 0) return 0 let s = getUartStatus(port) if (s) return s pause(25) } } function uartClearChange(port: number) { const UART_DATA_READY = 8 const UART_PORT_CHANGED = 1 while (true) { let status = getUartStatus(port) if (port < 0) break if ((status & UART_DATA_READY) != 0 && (status & UART_PORT_CHANGED) == 0) break devcon.setNumber(NumberFormat.Int8LE, DevConOff.Connection + port, DAL.CONN_INPUT_UART) devcon.setNumber(NumberFormat.Int8LE, DevConOff.Type + port, 0) devcon.setNumber(NumberFormat.Int8LE, DevConOff.Mode + port, 0) uartMM.ioctl(IO.UART_CLEAR_CHANGED, devcon) uartMM.setNumber(NumberFormat.Int8LE, UartOff.Status + port, getUartStatus(port) & 0xfffe) pause(10) } } function setUartMode(port: number, mode: number) { const UART_PORT_CHANGED = 1 while (true) { if (port < 0) return control.dmesg(`UART set mode to ${mode} at ${port}`) devcon.setNumber(NumberFormat.Int8LE, DevConOff.Connection + port, DAL.CONN_INPUT_UART) devcon.setNumber(NumberFormat.Int8LE, DevConOff.Type + port, 33) devcon.setNumber(NumberFormat.Int8LE, DevConOff.Mode + port, mode) uartMM.ioctl(IO.UART_SET_CONN, devcon) let status = waitNonZeroUartStatus(port) if (status & UART_PORT_CHANGED) { uartClearChange(port) } else { break } pause(10) } } function getUartBytes(port: number): Buffer { if (port < 0) return output.createBuffer(DAL.MAX_DEVICE_DATALENGTH) let index = uartMM.getNumber(NumberFormat.UInt16LE, UartOff.Actual + port * 2) return uartMM.slice( UartOff.Raw + DAL.MAX_DEVICE_DATALENGTH * 300 * port + DAL.MAX_DEVICE_DATALENGTH * index, DAL.MAX_DEVICE_DATALENGTH) } function getUartNumber(fmt: NumberFormat, off: number, port: number) { if (port < 0) return 0 let index = uartMM.getNumber(NumberFormat.UInt16LE, UartOff.Actual + port * 2) return uartMM.getNumber(fmt, UartOff.Raw + DAL.MAX_DEVICE_DATALENGTH * 300 * port + DAL.MAX_DEVICE_DATALENGTH * index + off) } const enum NxtColOff { Calibration = 0, // uint32[4][3] CalLimits = 48, // uint16[2] Crc = 52, // uint16 ADRaw = 54, // uint16[4] SensorRaw = 62, // uint16[4] Padding = 70, Size = 72 } const enum AnalogOff { InPin1 = 0, // int16[4] InPin6 = 8, // int16[4] OutPin5 = 16, // int16[4] BatteryTemp = 24, // int16 MotorCurrent = 26, // int16 BatteryCurrent = 28, // int16 Cell123456 = 30, // int16 Pin1 = 32, // int16[300][4] Pin6 = 2432, // int16[300][4] Actual = 4832, // uint16[4] LogIn = 4840, // uint16[4] LogOut = 4848, // uint16[4] NxtCol = 4856, // uint16[36][4] - NxtColor*4 OutPin5Low = 5144, // int16[4] Updated = 5152, // int8[4] InDcm = 5156, // int8[4] InConn = 5160, // int8[4] OutDcm = 5164, // int8[4] OutConn = 5168, // int8[4] Size = 5172 } const enum DevConOff { Connection = 0, // int8[4] Type = 4, // int8[4] Mode = 8, // int8[4] Size = 12 } const enum TypesOff { Name = 0, // int8[12] Type = 12, // int8 Connection = 13, // int8 Mode = 14, // int8 DataSets = 15, // int8 Format = 16, // int8 Figures = 17, // int8 Decimals = 18, // int8 Views = 19, // int8 RawMin = 20, // float32 RawMax = 24, // float32 PctMin = 28, // float32 PctMax = 32, // float32 SiMin = 36, // float32 SiMax = 40, // float32 InvalidTime = 44, // uint16 IdValue = 46, // uint16 Pins = 48, // int8 Symbol = 49, // int8[5] Align = 54, // uint16 Size = 56 } const enum UartOff { TypeData = 0, // Types[8][4] Repeat = 1792, // uint16[300][4] Raw = 4192, // int8[32][300][4] Actual = 42592, // uint16[4] LogIn = 42600, // uint16[4] Status = 42608, // int8[4] Output = 42612, // int8[32][4] OutputLength = 42740, // int8[4] Size = 42744 } const enum UartCtlOff { TypeData = 0, // Types Port = 56, // int8 Mode = 57, // int8 Size = 58 } const enum IO { UART_SET_CONN = 0xc00c7500, UART_READ_MODE_INFO = 0xc03c7501, UART_NACK_MODE_INFO = 0xc03c7502, UART_CLEAR_CHANGED = 0xc03c7503, IIC_SET_CONN = 0xc00c6902, IIC_READ_TYPE_INFO = 0xc03c6903, IIC_SETUP = 0xc04c6905, IIC_SET = 0xc02c6906, TST_PIN_ON = 0xc00b7401, TST_PIN_OFF = 0xc00b7402, TST_PIN_READ = 0xc00b7403, TST_PIN_WRITE = 0xc00b7404, TST_UART_ON = 0xc0487405, TST_UART_OFF = 0xc0487406, TST_UART_EN = 0xc0487407, TST_UART_DIS = 0xc0487408, TST_UART_READ = 0xc0487409, TST_UART_WRITE = 0xc048740a, } } namespace sensors { export enum ThresholdState { Normal = 1, High = 2, Low = 3, } export class ThresholdDetector { public id: number; public min: number; public max: number; public lowThreshold: number; public highThreshold: number; public level: number; public state: ThresholdState; constructor(id: number, min = 0, max = 100, lowThreshold = 20, highThreshold = 80) { this.id = id; this.min = min; this.max = max; this.lowThreshold = lowThreshold; this.highThreshold = highThreshold; this.level = Math.ceil((max - min) / 2); this.state = ThresholdState.Normal; } public setLevel(level: number) { if (this == null) return this.level = this.clampValue(level); if (this.level >= this.highThreshold) { this.setState(ThresholdState.High); } else if (this.level <= this.lowThreshold) { this.setState(ThresholdState.Low); } else { const interval = (this.highThreshold - this.lowThreshold) / 6; if ((this.state == ThresholdState.High && this.level < this.highThreshold - interval) || (this.state == ThresholdState.Low && this.level > this.lowThreshold + interval)) this.setState(ThresholdState.Normal); } } public threshold(t: ThresholdState): number { switch(t) { case ThresholdState.High: return this.highThreshold; case ThresholdState.Low: return this.lowThreshold; default: return (this.max - this.min) / 2; } } public setLowThreshold(value: number) { this.lowThreshold = this.clampValue(value); this.highThreshold = Math.max(this.lowThreshold + 1, this.highThreshold); } public setHighThreshold(value: number) { this.highThreshold = this.clampValue(value); this.lowThreshold = Math.min(this.highThreshold - 1, this.lowThreshold); } private clampValue(value: number) { if (value < this.min) { return this.min; } else if (value > this.max) { return this.max; } return value; } private setState(state: ThresholdState) { if (this.state == state) return; this.state = state; switch (state) { case ThresholdState.High: control.raiseEvent(this.id, ThresholdState.High); break; case ThresholdState.Low: control.raiseEvent(this.id, ThresholdState.Low); break; } } } }