enum Output { //% block="A" A = 0x01, //% block="B" B = 0x02, //% block="C" C = 0x04, //% block="D" D = 0x08, //% block="All" ALL = 0x0f } enum OutputType { None = 0, Tacho = 7, MiniTacho = 8, } namespace output { let pwmMM: MMap let motorMM: MMap const enum MotorDataOff { TachoCounts = 0, // int32 Speed = 4, // int8 Padding = 5, // int8[3] TachoSensor = 8, // int32 Size = 12 } function init() { if (pwmMM) return pwmMM = control.mmap("/dev/lms_pwm", 0, 0) if (!pwmMM) control.fail("no PWM file") motorMM = control.mmap("/dev/lms_motor", MotorDataOff.Size * DAL.NUM_OUTPUTS, 0) resetMotors() let buf = output.createBuffer(1) buf[0] = DAL.opProgramStart writePWM(buf) } function writePWM(buf: Buffer): void { init() pwmMM.write(buf) } function readPWM(buf: Buffer): void { init() pwmMM.read(buf); } function mkCmd(out: Output, cmd: number, addSize: number) { const b = createBuffer(2 + addSize) b.setNumber(NumberFormat.UInt8LE, 0, cmd) b.setNumber(NumberFormat.UInt8LE, 1, out) return b } function resetMotors() { reset(Output.ALL) } //% fixedInstances export class Motor extends control.Component { port: Output; constructor(port: Output) { super(); this.port = port; } /** * Power off the motor. * @param motor the motor to turn off */ //% blockId=outputMotorOf block="%motor|OFF then brake %brake" //% brake.fieldEditor=toggleonoff //% weight=100 group="Motors" blockGap=8 off(brake = false) { const b = mkCmd(this.port, DAL.opOutputStop, 1) b.setNumber(NumberFormat.UInt8LE, 2, brake ? 1 : 0) writePWM(b) } /** * Power on the motor. * @param motor the motor to turn on * @param power the motor power level from ``-100`` to ``100``, eg: 50 */ //% blockId=outputMotorOn block="%motor|ON at power %power" //% power.min=-100 power.max=100 //% weight=99 group="Motors" blockGap=8 on(power: number = 50) { this.setPower(power); const b = mkCmd(this.port, DAL.opOutputStart, 0) writePWM(b); } /** * Power on the motor for a specified number of milliseconds. * @param motor the motor to turn on * @param power the motor power level from ``-100`` to ``100``, eg: 50 * @param ms the number of milliseconds to turn the motor on, eg: 500 * @param brake whether or not to use the brake */ //% blockId=outputMotorOnForTime block="%motor|ON at power %power|for %ms=timePicker|ms then brake %brake" //% power.min=-100 power.max=100 //% brake.fieldEditor=toggleonoff //% weight=98 group="Motors" blockGap=8 onForTime(power: number, ms: number, brake = false) { step(this.port, { power, step1: 0, step2: ms, step3: 0, useSteps: false, useBrake: brake }) loops.pause(ms); } /** * Sets the motor power level from ``-100`` to ``100``. * @param motor the output connection that the motor is connected to * @param power the desired speed to use. eg: 50 */ //% blockId=motorSetPower block="%motor|set power to %speed" //% weight=60 group="Motors" //% speed.min=-100 speed.max=100 setPower(power: number) { const b = mkCmd(this.port, DAL.opOutputPower, 1) b.setNumber(NumberFormat.Int8LE, 2, Math.clamp(-100, 100, power)) writePWM(b) } /** * Gets motor actual speed. * @param motor the port which connects to the motor */ //% blockId=motorSpeed block="%motor|speed" //% weight=50 group="Motors" blockGap=8 speed() { return getMotorData(this.port).actualSpeed; } } //% whenUsed fixedInstance block="motor B" export const motorB = new Motor(Output.B); //% whenUsed fixedInstance block="motor C" export const motorC = new Motor(Output.C); //% whenUsed fixedInstance block="motor A" export const motorA = new Motor(Output.A); //% whenUsed fixedInstance block="motor D" export const motorD = new Motor(Output.D); function reset(out: Output) { let b = mkCmd(out, DAL.opOutputReset, 0) writePWM(b) } function clearCount(out: Output) { let b = mkCmd(out, DAL.opOutputClearCount, 0) writePWM(b) for (let i = 0; i < DAL.NUM_OUTPUTS; ++i) { if (out & (1 << i)) { motorMM.setNumber(NumberFormat.Int32LE, i * MotorDataOff.Size + MotorDataOff.TachoSensor, 0) } } } function outOffset(out: Output) { for (let i = 0; i < DAL.NUM_OUTPUTS; ++i) { if (out & (1 << i)) return i * MotorDataOff.Size } return 0 } interface MotorData { actualSpeed: number; // -100..+100 tachoCount: number; count: number; } // only a single output at a time function getMotorData(out: Output): MotorData { let buf = motorMM.slice(outOffset(out), MotorDataOff.Size) return { actualSpeed: buf.getNumber(NumberFormat.Int8LE, MotorDataOff.Speed), tachoCount: buf.getNumber(NumberFormat.Int32LE, MotorDataOff.TachoCounts), count: buf.getNumber(NumberFormat.Int32LE, MotorDataOff.TachoSensor), } } function setPolarity(out: Output, polarity: number) { let b = mkCmd(out, DAL.opOutputPolarity, 1) b.setNumber(NumberFormat.Int8LE, 2, Math.clamp(-1, 1, polarity)) writePWM(b) } interface StepOptions { power?: number; speed?: number; // either speed or power has to be present step1: number; step2: number; step3: number; useSteps?: boolean; // otherwise use milliseconds useBrake?: boolean; } function step(out: Output, opts: StepOptions) { let op = opts.useSteps ? DAL.opOutputStepSpeed : DAL.opOutputTimeSpeed let speed = opts.speed if (speed == null) { speed = opts.power op = opts.useSteps ? DAL.opOutputStepPower : DAL.opOutputTimePower if (speed == null) return } speed = Math.clamp(-100, 100, speed) let b = mkCmd(out, op, 15) b.setNumber(NumberFormat.Int8LE, 2, speed) // note that b[3] is padding b.setNumber(NumberFormat.Int32LE, 4 + 4 * 0, opts.step1) b.setNumber(NumberFormat.Int32LE, 4 + 4 * 1, opts.step2) b.setNumber(NumberFormat.Int32LE, 4 + 4 * 2, opts.step3) b.setNumber(NumberFormat.Int8LE, 4 + 4 * 3, opts.useBrake ? 1 : 0) writePWM(b) } const types = [0, 0, 0, 0] export function setType(out: Output, type: OutputType) { let b = mkCmd(out, DAL.opOutputSetType, 3) for (let i = 0; i < 4; ++i) { if (out & (1 << i)) { types[i] = type } b.setNumber(NumberFormat.UInt8LE, i + 1, types[i]) } writePWM(b) } } interface Buffer { [index: number]: number; // rest defined in buffer.cpp }