enum Output { //% block="A" A = 0x01, //% block="B" B = 0x02, //% block="C" C = 0x04, //% block="D" D = 0x08, //% block="All" ALL = 0x0f } enum OutputType { None = 0, Tacho = 7, MiniTacho = 8, } namespace motors { let pwmMM: MMap let motorMM: MMap const enum MotorDataOff { TachoCounts = 0, // int32 Speed = 4, // int8 Padding = 5, // int8[3] TachoSensor = 8, // int32 Size = 12 } function init() { if (pwmMM) return pwmMM = control.mmap("/dev/lms_pwm", 0, 0) if (!pwmMM) control.fail("no PWM file") motorMM = control.mmap("/dev/lms_motor", MotorDataOff.Size * DAL.NUM_OUTPUTS, 0) resetMotors() let buf = output.createBuffer(1) buf[0] = DAL.opProgramStart writePWM(buf) } function writePWM(buf: Buffer): void { init() pwmMM.write(buf) } function readPWM(buf: Buffer): void { init() pwmMM.read(buf); } function mkCmd(out: Output, cmd: number, addSize: number) { const b = output.createBuffer(2 + addSize) b.setNumber(NumberFormat.UInt8LE, 0, cmd) b.setNumber(NumberFormat.UInt8LE, 1, out) return b } function resetMotors() { reset(Output.ALL) } /** * Stops all motors */ //% blockId=motorStopAll block="stop all motors" //% weight=10 group="Motors" blockGap=8 export function stopAllMotors() { const b = mkCmd(Output.ALL, DAL.opOutputStop, 0) writePWM(b) } //% fixedInstances export class Motor extends control.Component { private port: Output; private large: boolean; private brake: boolean; constructor(port: Output, large: boolean) { super(); this.port = port; this.large = large; this.brake = false; } /** * Sets the motor power level from ``-100`` to ``100``. * @param motor the output connection that the motor is connected to * @param power the power from ``100`` full forward to ``-100`` full backward, eg: 50 */ //% blockId=motorSetPower block="power %motor|to %power|%" //% weight=99 group="Motors" blockGap=8 //% power.min=-100 power.max=100 power(power: number) { power = Math.clamp(-100, 100, power >> 0); const b = mkCmd(this.port, DAL.opOutputPower, 1) b.setNumber(NumberFormat.Int8LE, 2, power) writePWM(b) if (power) { const b = mkCmd(this.port, DAL.opOutputStart, 0) writePWM(b); } else { this.stop(); } } /** * Moves the motor by a number of degrees * @param degrees the angle to turn the motor * @param angle the degrees to rotate, eg: 360 * @param power the power from ``100`` full forward to ``-100`` full backward, eg: 50 */ //% blockId=motorMove block="move %motor|by %angle|degrees at %power|%" //% weight=98 group="Motors" blockGap=8 //% power.min=-100 power.max=100 move(angle: number, power: number) { angle = angle >> 0; power = Math.clamp(-100, 100, power >> 0); step(this.port, { speed: power, step1: 0, step2: angle, step3: 0, useSteps: true, useBrake: this.brake }) } /** * Stops the motor */ //% blockId=motorStop block="stop %motor" //% weight=97 group="Motors" stop() { const b = mkCmd(this.port, DAL.opOutputStop, 1) b.setNumber(NumberFormat.UInt8LE, 2, this.brake ? 1 : 0) writePWM(b); } /** * Sets the automatic brake on or off when the motor is off * @param brake a value indicating if the motor should break when off */ //% blockId=outputMotorSetBrakeMode block="set %motor|brake %brake" //% brake.fieldEditor=toggleonoff //% weight=60 group="Motors" blockGap=8 setBrake(brake: boolean) { this.brake = brake; } /** * Reverses the motor polarity */ //% blockId=motorSetReversed block="set %motor|reversed %reversed" //% reversed.fieldEditor=toggleonoff //% weight=59 group="Motors" setReversed(reversed: boolean) { const b = mkCmd(this.port, DAL.opOutputPolarity, 1) b.setNumber(NumberFormat.Int8LE, 2, reversed ? -1 : 1); writePWM(b) } /** * Gets motor actual speed. * @param motor the port which connects to the motor */ //% blockId=motorSpeed block="%motor|speed" //% weight=72 group="Motors" blockGap=8 speed(): number { return getMotorData(this.port).actualSpeed; } /** * Gets motor step count. * @param motor the port which connects to the motor */ //% blockId=motorCount block="%motor|count" //% weight=71 group="Motors" blockGap=8 count(): number { return getMotorData(this.port).count; } /** * Gets motor tacho count. * @param motor the port which connects to the motor */ //% blockId=motorTachoCount block="%motor|tacho count" //% weight=70 group="Motors" tachoCount(): number { return getMotorData(this.port).tachoCount; } /** * Clears the motor count */ clearCount() { const b = mkCmd(this.port, DAL.opOutputClearCount, 0) writePWM(b) for (let i = 0; i < DAL.NUM_OUTPUTS; ++i) { if (this.port & (1 << i)) { motorMM.setNumber(NumberFormat.Int32LE, i * MotorDataOff.Size + MotorDataOff.TachoSensor, 0) } } } /** * Resets the motor. */ reset() { reset(this.port); } } //% whenUsed fixedInstance block="large motor A" export const largeMotorA = new Motor(Output.A, true); //% whenUsed fixedInstance block="large motor B" export const largeMotorB = new Motor(Output.B, true); //% whenUsed fixedInstance block="large motor C" export const largeMotorC = new Motor(Output.C, true); //% whenUsed fixedInstance block="large motor D" export const largeMotorD = new Motor(Output.D, true); //% whenUsed fixedInstance block="medium motor A" export const mediumMotorA = new Motor(Output.A, false); //% whenUsed fixedInstance block="medium motor B" export const mediumMotorB = new Motor(Output.B, false); //% whenUsed fixedInstance block="medium motor C" export const mediumMotorC = new Motor(Output.C, false); //% whenUsed fixedInstance block="medium motor D" export const mediumMotorD = new Motor(Output.D, false); function reset(out: Output) { let b = mkCmd(out, DAL.opOutputReset, 0) writePWM(b) } function outOffset(out: Output) { for (let i = 0; i < DAL.NUM_OUTPUTS; ++i) { if (out & (1 << i)) return i * MotorDataOff.Size } return 0 } interface MotorData { actualSpeed: number; // -100..+100 tachoCount: number; count: number; } // only a single output at a time function getMotorData(out: Output): MotorData { let buf = motorMM.slice(outOffset(out), MotorDataOff.Size) return { actualSpeed: buf.getNumber(NumberFormat.Int8LE, MotorDataOff.Speed), tachoCount: buf.getNumber(NumberFormat.Int32LE, MotorDataOff.TachoCounts), count: buf.getNumber(NumberFormat.Int32LE, MotorDataOff.TachoSensor), } } interface StepOptions { power?: number; speed?: number; // either speed or power has to be present step1: number; step2: number; step3: number; useSteps?: boolean; // otherwise use milliseconds useBrake?: boolean; } function step(out: Output, opts: StepOptions) { let op = opts.useSteps ? DAL.opOutputStepSpeed : DAL.opOutputTimeSpeed let speed = opts.speed if (speed == null) { speed = opts.power op = opts.useSteps ? DAL.opOutputStepPower : DAL.opOutputTimePower if (speed == null) return } speed = Math.clamp(-100, 100, speed) let b = mkCmd(out, op, 15) b.setNumber(NumberFormat.Int8LE, 2, speed) // note that b[3] is padding b.setNumber(NumberFormat.Int32LE, 4 + 4 * 0, opts.step1) b.setNumber(NumberFormat.Int32LE, 4 + 4 * 1, opts.step2) b.setNumber(NumberFormat.Int32LE, 4 + 4 * 2, opts.step3) b.setNumber(NumberFormat.Int8LE, 4 + 4 * 3, opts.useBrake ? 1 : 0) writePWM(b) } const types = [0, 0, 0, 0] export function setType(out: Output, type: OutputType) { let b = mkCmd(out, DAL.opOutputSetType, 3) for (let i = 0; i < 4; ++i) { if (out & (1 << i)) { types[i] = type } b.setNumber(NumberFormat.UInt8LE, i + 1, types[i]) } writePWM(b) } } interface Buffer { [index: number]: number; // rest defined in buffer.cpp }