enum Output { //% block="A" A = 0x01, //% block="B" B = 0x02, //% block="C" C = 0x04, //% block="D" D = 0x08, //% block="B+C" BC = Output.B | Output.C, //% block="A+B" AB = Output.A | Output.B, //% block="C+D" CD = Output.C | Output.D, //% block="A+D" AD = Output.A | Output.D, //% block="All" ALL = 0x0f } enum OutputType { None = 0, Tacho = 7, MiniTacho = 8, } enum MoveUnit { //% block="rotations" Rotations, //% block="degrees" Degrees, //% block="seconds" Seconds, //% block="milliseconds" MilliSeconds } enum MovePhase { //% block="acceleration" Acceleration, //% block="deceleration" Deceleration } namespace motors { let pwmMM: MMap let motorMM: MMap const enum MotorDataOff { TachoCounts = 0, // int32 Speed = 4, // int8 Padding = 5, // int8[3] TachoSensor = 8, // int32 Size = 12 } function init() { if (pwmMM) return pwmMM = control.mmap("/dev/lms_pwm", 0, 0) if (!pwmMM) control.fail("no PWM file") motorMM = control.mmap("/dev/lms_motor", MotorDataOff.Size * DAL.NUM_OUTPUTS, 0) if (!motorMM) control.fail("no motor file") resetAll() const buf = output.createBuffer(1) buf[0] = DAL.opProgramStart writePWM(buf) } /** * Sends a command to the motors device * @param buf the command buffer */ //% export function writePWM(buf: Buffer): void { init() pwmMM.write(buf) } /** * Sends and receives a message from the motors device * @param buf message buffer */ //% export function readPWM(buf: Buffer): void { init() pwmMM.read(buf); } /** * Allocates a message buffer * @param out ports * @param cmd command id * @param addSize required additional bytes */ //% export function mkCmd(out: Output, cmd: number, addSize: number) { const b = output.createBuffer(2 + addSize) b.setNumber(NumberFormat.UInt8LE, 0, cmd) b.setNumber(NumberFormat.UInt8LE, 1, out) return b } export function outputToName(out: Output): string { let r = ""; for (let i = 0; i < DAL.NUM_OUTPUTS; ++i) { if (out & (1 << i)) { if (r.length > 0) r += "+"; r += "ABCD"[i]; } } return r; } /** * Stops all motors */ //% blockId=motorStopAll block="stop all motors" //% weight=2 //% group="Move" //% help=motors/stop-all export function stopAll() { const b = mkCmd(Output.ALL, DAL.opOutputStop, 0) writePWM(b); control.cooperate(); } /** * Resets all motors */ //% blockId=motorResetAll block="reset all motors" //% weight=1 //% group="Move" //% help=motors/reset-all export function resetAll() { reset(Output.ALL) control.cooperate(); } interface MoveSchedule { speed: number; useSteps: boolean; steps: number[]; } //% fixedInstances export class MotorBase extends control.Component { protected _port: Output; protected _portName: string; protected _brake: boolean; protected _regulated: boolean; private _pauseOnRun: boolean; private _initialized: boolean; private _brakeSettleTime: number; private _init: () => void; private _accelerationSteps: number; private _accelerationTime: number; private _decelerationSteps: number; private _decelerationTime: number; private _inverted: boolean; protected static output_types: number[] = [0x7, 0x7, 0x7, 0x7]; constructor(port: Output, init: () => void) { super(); this._port = port; this._portName = outputToName(this._port); this._brake = false; this._regulated = true; this._pauseOnRun = true; this._initialized = false; this._brakeSettleTime = 10; this._init = init; this._accelerationSteps = 0; this._accelerationTime = 0; this._decelerationSteps = 0; this._decelerationTime = 0; this._inverted = false; } /** * Lazy initialization code */ protected init() { if (!this._initialized) { this._initialized = true; this._init(); } } /** * Sets the automatic brake on or off when the motor is off * @param brake a value indicating if the motor should break when off */ //% blockId=outputMotorSetBrakeMode block="set %motor|brake %brake=toggleOnOff" //% motor.fieldEditor="speed" //% motor.fieldOptions.decompileLiterals=1 //% weight=60 blockGap=8 //% group="Properties" //% help=motors/motor/set-brake setBrake(brake: boolean) { this.init(); this._brake = brake; } /** * Indicates to pause while a motor moves for a given distance or duration. * @param value true to pause; false to continue the program execution */ //% blockId=outputMotorSetPauseMode block="set %motor|pause on run %brake=toggleOnOff" //% motor.fieldEditor="speed" //% motor.fieldOptions.decompileLiterals=1 //% weight=60 blockGap=8 //% group="Properties" setPauseOnRun(value: boolean) { this.init(); this._pauseOnRun = value; } /** * Inverts the motor polarity */ //% blockId=motorSetInverted block="set %motor|inverted %reversed=toggleOnOff" //% motor.fieldEditor="speed" //% motor.fieldOptions.decompileLiterals=1 //% weight=59 blockGap=8 //% group="Properties" //% help=motors/motor/set-inverted setInverted(inverted: boolean) { this.init(); this._inverted = inverted; } protected invertedFactor(): number { return this._inverted ? -1 : 1; } /** * Set the settle time after braking in milliseconds (default is 10ms). */ //% blockId=motorSetBrakeSettleTime block="set %motor|brake settle time %millis|ms" //% motor.fieldEditor="speed" //% motor.fieldOptions.decompileLiterals=1 //% weight=1 blockGap=8 //% group="Properties" //% millis.defl=200 millis.min=0 millis.max=500 //% help=motors/motor/set-brake-settle-time setBrakeSettleTime(millis: number) { this.init(); // ensure in [0,500] this._brakeSettleTime = Math.max(0, Math.min(500, millis | 0)) } /** * Stops the motor(s). */ //% weight=6 blockGap=8 //% group="Move" //% help=motors/motor/stop //% blockId=motorStop block="stop %motors|" //% motors.fieldEditor="motors" stop() { this.init(); stop(this._port, this._brake); this.settle(); } protected settle() { // if we've recently completed a motor command with brake // allow 500ms for robot to settle if (this._brake && this._brakeSettleTime > 0) pause(this._brakeSettleTime); else { control.cooperate(); } } protected pauseOnRun(stepsOrTime: number) { if (stepsOrTime && this._pauseOnRun) { // wait till motor is done with this work this.pauseUntilReady(); // allow robot to settle this.settle(); } else { control.cooperate(); } } /** * Resets the motor(s). */ //% weight=5 //% group="Move" //% help=motors/motor/reset //% blockId=motorReset block="reset %motors|" //% motors.fieldEditor="motors" reset() { this.init(); reset(this._port); } private normalizeSchedule(speed: number, step1: number, step2: number, step3: number, unit: MoveUnit): MoveSchedule { // motor polarity is not supported at the firmware level for sync motor operations const r: MoveSchedule = { speed: Math.clamp(-100, 100, speed | 0) * this.invertedFactor(), useSteps: true, steps: [step1 || 0, step2 || 0, step3 || 0] } let scale = 1; switch (unit) { case MoveUnit.Rotations: scale = 360; r.useSteps = true; if (r.steps[1] < 0) { r.speed = -r.speed; r.steps[1] = -r.steps[1]; } break; case MoveUnit.Degrees: r.useSteps = true; if (r.steps[1] < 0) { r.speed = -r.speed; r.steps[1] = -r.steps[1]; } break; case MoveUnit.Seconds: scale = 1000; r.useSteps = false; break; default: r.useSteps = false; break; } for (let i = 0; i < r.steps.length; ++i) r.steps[i] = Math.max(0, (r.steps[i] * scale) | 0); return r; } /** * Runs the motor at a given speed for limited time or distance. * @param speed the speed from ``100`` full forward to ``-100`` full backward, eg: 50 * @param value (optional) measured distance or rotation * @param unit (optional) unit of the value */ //% blockId=motorRun block="run %motor at %speed=motorSpeedPicker|\\%||for %value %unit" //% weight=100 blockGap=8 //% group="Move" //% motor.fieldEditor="speed" //% motor.fieldOptions.decompileLiterals=1 //% expandableArgumentMode=toggle //% help=motors/motor/run run(speed: number, value: number = 0, unit: MoveUnit = MoveUnit.MilliSeconds) { this.init(); const schedule = this.normalizeSchedule(speed, 0, value, 0, unit); // stop if speed is 0 if (!schedule.speed) { this.stop(); return; } // special: 0 is infinity if (schedule.steps[0] + schedule.steps[1] + schedule.steps[2] == 0) { this._run(schedule.speed); control.cooperate(); return; } // timed motor moves const steps = schedule.steps; const useSteps = schedule.useSteps; // compute ramp up and down steps[0] = (useSteps ? this._accelerationSteps : this._accelerationTime) || 0; steps[2] = (useSteps ? this._decelerationSteps : this._decelerationTime) || 0; if (steps[0] + steps[2] > steps[1]) { // rescale const r = steps[1] / (steps[0] + steps[2]); steps[0] = Math.floor(steps[0] * r); steps[2] *= Math.floor(steps[2] * r); } steps[1] -= (steps[0] + steps[2]); // send ramped command this._schedule(schedule); this.pauseOnRun(steps[0] + steps[1] + steps[2]); } /** * Schedules a run of the motor with an acceleration, constant and deceleration phase. * @param speed the speed from ``100`` full forward to ``-100`` full backward, eg: 50 * @param value measured distance or rotation, eg: 500 * @param unit (optional) unit of the value, eg: MoveUnit.MilliSeconds * @param acceleration acceleration phase measured distance or rotation, eg: 500 * @param deceleration deceleration phase measured distance or rotation, eg: 500 */ //% blockId=motorSchedule block="ramp %motor at %speed=motorSpeedPicker|\\%|for %value|%unit||accelerate %acceleration|decelerate %deceleration" //% weight=99 blockGap=8 //% group="Move" //% motor.fieldEditor="speed" //% motor.fieldOptions.decompileLiterals=1 //% help=motors/motor/ramp //% inlineInputMode=inline //% expandableArgumentMode=toggle //% value.defl=500 ramp(speed: number, value: number = 500, unit: MoveUnit = MoveUnit.MilliSeconds, acceleration?: number, deceleration?: number) { this.init(); const schedule = this.normalizeSchedule(speed, acceleration, value, deceleration, unit); // stop if speed is 0 if (!schedule.speed) { this.stop(); return; } // special case: do nothing if (schedule.steps[0] + schedule.steps[1] + schedule.steps[2] == 0) { return; } // timed motor moves const steps = schedule.steps; // send ramped command this._schedule(schedule); this.pauseOnRun(steps[0] + steps[1] + steps[2]); } /** * Specifies the amount of rotation or time for the acceleration * of run commands. */ //% blockId=outputMotorsetRunRamp block="set %motor|run %ramp to $value||$unit" //% motor.fieldEditor="speed" //% motor.fieldOptions.decompileLiterals=1 //% weight=21 blockGap=8 //% group="Properties" //% help=motors/motor/set-run-phase setRunPhase(phase: MovePhase, value: number, unit: MoveUnit = MoveUnit.MilliSeconds) { let temp: number; switch (unit) { case MoveUnit.Rotations: temp = Math.max(0, (value * 360) | 0); if (phase == MovePhase.Acceleration) this._accelerationSteps = temp; else this._decelerationSteps = temp; break; case MoveUnit.Degrees: temp = Math.max(0, value | 0); if (phase == MovePhase.Acceleration) this._accelerationSteps = temp; else this._decelerationSteps = temp; break; case MoveUnit.Seconds: temp = Math.max(0, (value * 1000) | 0); if (phase == MovePhase.Acceleration) this._accelerationTime = temp; else this._decelerationTime = temp; break; case MoveUnit.MilliSeconds: temp = Math.max(0, value | 0); if (phase == MovePhase.Acceleration) this._accelerationTime = temp; else this._decelerationTime = temp; break; } } private _run(speed: number) { // ramp up acceleration if (this._accelerationTime) { this._schedule({ speed: speed, useSteps: false, steps: [this._accelerationTime, 100, 0] }); pause(this._accelerationTime); } // keep going const b = mkCmd(this._port, this._regulated ? DAL.opOutputSpeed : DAL.opOutputPower, 1) b.setNumber(NumberFormat.Int8LE, 2, speed) writePWM(b) if (speed) { writePWM(mkCmd(this._port, DAL.opOutputStart, 0)) } } private _schedule(schedule: MoveSchedule) { const p = { useSteps: schedule.useSteps, step1: schedule.steps[0], step2: schedule.steps[1], step3: schedule.steps[2], speed: this._regulated ? schedule.speed : undefined, power: this._regulated ? undefined : schedule.speed, useBrake: this._brake }; step(this._port, p) } /** * Indicates if the motor(s) speed should be regulated. Default is true. * @param value true for regulated motor */ //% blockId=outputMotorSetRegulated block="set %motor|regulated %value=toggleOnOff" //% motor.fieldEditor="speed" //% motor.fieldOptions.decompileLiterals=1 //% weight=58 blockGap=8 //% group="Properties" //% help=motors/motor/set-regulated setRegulated(value: boolean) { this._regulated = value; } /** * Returns a value indicating if the motor is still running a previous command. */ //% group="Sensors" isReady(): boolean { this.init(); const buf = mkCmd(this._port, DAL.opOutputTest, 2); readPWM(buf) const flags = buf.getNumber(NumberFormat.UInt8LE, 2); return (~flags & this._port) == this._port; } /** * Pauses the execution until the previous command finished. * @param timeOut optional maximum pausing time in milliseconds */ //% blockId=motorPauseUntilRead block="pause until %motor|ready" //% motor.fieldEditor="speed" //% motor.fieldOptions.decompileLiterals=1 //% weight=90 blockGap=8 //% group="Move" pauseUntilReady(timeOut?: number) { pauseUntil(() => this.isReady(), timeOut); } setRunSmoothness(accelerationPercent: number, decelerationPercent: number) { } protected setOutputType(large: boolean) { for (let i = 0; i < DAL.NUM_OUTPUTS; ++i) { if (this._port & (1 << i)) { // (0x07: Large motor, Medium motor = 0x08) MotorBase.output_types[i] = large ? 0x07 : 0x08; } } MotorBase.setTypes(); } // Note, we are having to create our own buffer here as mkCmd creates a buffer with a command // In the case of opOutputSetType, it expects the arguments to be opOutputSetType [type0, type1, type2, type3] static setTypes() { const b = output.createBuffer(5) b.setNumber(NumberFormat.UInt8LE, 0, DAL.opOutputSetType) b.setNumber(NumberFormat.Int8LE, 1, MotorBase.output_types[0]); b.setNumber(NumberFormat.Int8LE, 2, MotorBase.output_types[1]); b.setNumber(NumberFormat.Int8LE, 3, MotorBase.output_types[2]); b.setNumber(NumberFormat.Int8LE, 4, MotorBase.output_types[3]); writePWM(b) } } //% fixedInstances export class Motor extends MotorBase { private _large: boolean; constructor(port: Output, large: boolean) { super(port, () => this.__init()); this._large = large; this.markUsed(); } markUsed() { motors.__motorUsed(this._port, this._large); } private __init() { this.setOutputType(this._large); this.setInverted(false); } /** * Gets motor actual speed. * @param motor the port which connects to the motor */ //% blockId=motorSpeed block="%motor|speed" //% motor.fieldEditor="speed" //% motor.fieldOptions.decompileLiterals=1 //% weight=72 //% blockGap=8 //% group="Counters" //% help=motors/motor/speed speed(): number { this.init(); return getMotorData(this._port).actualSpeed; } /** * Gets motor angle. * @param motor the port which connects to the motor */ //% blockId=motorAngle block="%motor|angle" //% motor.fieldEditor="speed" //% motor.fieldOptions.decompileLiterals=1 //% weight=70 //% blockGap=8 //% group="Counters" //% help=motors/motor/angle angle(): number { this.init(); return getMotorData(this._port).count * this.invertedFactor(); } /** * Clears the motor count */ //% blockId=motorClearCount block="clear %motor|counters" //% motor.fieldEditor="speed" //% motor.fieldOptions.decompileLiterals=1 //% weight=68 //% blockGap=8 //% group="Counters" //% help=motors/motor/clear-counts clearCounts() { this.init(); const b = mkCmd(this._port, DAL.opOutputClearCount, 0) writePWM(b) for (let i = 0; i < DAL.NUM_OUTPUTS; ++i) { if (this._port & (1 << i)) { motorMM.setNumber(NumberFormat.Int32LE, i * MotorDataOff.Size + MotorDataOff.TachoSensor, 0) } } } /** * Returns the status of the motor */ //% toString(): string { return `${this._large ? "" : "M"}${this._portName} ${this.speed()}% ${this.angle()}>`; } /** * Pauses the program until the motor is stalled. */ //% blockId=motorPauseUntilStall block="pause until %motor|stalled" //% motor.fieldEditor="speed" //% motor.fieldOptions.decompileLiterals=1 //% weight=89 //% group="Move" //% help=motors/motor/pause-until-stalled pauseUntilStalled(timeOut?: number): void { // let it start pause(50); let previous = this.angle(); let stall = 0; pauseUntil(() => { let current = this.angle(); if (Math.abs(current - previous) < 1) { if (stall++ > 2) { return true; // not moving } } else { stall = 0; previous = current; } return false; }, timeOut) } } //% whenUsed fixedInstance block="large motor A" jres=icons.portA export const largeA = new Motor(Output.A, true); //% whenUsed fixedInstance block="large motor B" jres=icons.portB export const largeB = new Motor(Output.B, true); //% whenUsed fixedInstance block="large motor C" jres=icons.portC export const largeC = new Motor(Output.C, true); //% whenUsed fixedInstance block="large motor D" jres=icons.portD export const largeD = new Motor(Output.D, true); //% whenUsed fixedInstance block="medium motor A" jres=icons.portA export const mediumA = new Motor(Output.A, false); //% whenUsed fixedInstance block="medium motor B" jres=icons.portB export const mediumB = new Motor(Output.B, false); //% whenUsed fixedInstance block="medium motor C" jres=icons.portC export const mediumC = new Motor(Output.C, false); //% whenUsed fixedInstance block="medium motor D" jres=icons.portD export const mediumD = new Motor(Output.D, false); //% fixedInstances export class SynchedMotorPair extends MotorBase { constructor(ports: Output) { super(ports, () => this.__init()); this.markUsed(); } markUsed() { motors.__motorUsed(this._port, true); } private __init() { this.setOutputType(true); } /** * The Move Tank block can make a robot drive forward, backward, turn, or stop. * Use the Move Tank block for robot vehicles that have two Large Motors, * with one motor driving the left side of the vehicle and the other the right side. * You can make the two motors go at different speeds or in different directions * to make your robot turn. * @param speedLeft the speed on the left motor, eg: 50 * @param speedRight the speed on the right motor, eg: 50 * @param value (optional) move duration or rotation * @param unit (optional) unit of the value */ //% blockId=motorPairTank block="tank **motors** %motors %speedLeft=motorSpeedPicker|\\% %speedRight=motorSpeedPicker|\\%||for %value %unit" //% motors.fieldEditor="ports" //% weight=96 blockGap=8 //% inlineInputMode=inline //% group="Move" //% expandableArgumentMode=toggle //% help=motors/synced/tank tank(speedLeft: number, speedRight: number, value: number = 0, unit: MoveUnit = MoveUnit.MilliSeconds) { this.init(); speedLeft = Math.clamp(-100, 100, speedLeft >> 0); speedRight = Math.clamp(-100, 100, speedRight >> 0); const speed = Math.abs(speedLeft) > Math.abs(speedRight) ? speedLeft : speedRight; let turnRatio = speedLeft == speed ? speedLeft == 0 ? 0 : (100 - speedRight / speedLeft * 100) : speedRight == 0 ? 0 : (speedLeft / speedRight * 100 - 100); turnRatio = Math.floor(turnRatio); //control.dmesg(`tank ${speedLeft} ${speedRight} => ${turnRatio} ${speed}`) this.steer(turnRatio, speed, value, unit); } /** * Turns the motor and the follower motor by a number of rotations * @param turnRatio the ratio of power sent to the follower motor, from ``-200`` to ``200``, eg: 0 * @param speed the speed from ``100`` full forward to ``-100`` full backward, eg: 50 * @param value (optional) move duration or rotation * @param unit (optional) unit of the value */ //% blockId=motorPairSteer block="steer **motors** %chassis turn ratio %turnRatio=motorTurnRatioPicker speed %speed=motorSpeedPicker|\\%||for %value %unit" //% chassis.fieldEditor="ports" //% weight=95 //% turnRatio.min=-200 turnRatio=200 //% inlineInputMode=inline //% group="Move" //% expandableArgumentMode=toggle //% help=motors/synced/steer steer(turnRatio: number, speed: number, value: number = 0, unit: MoveUnit = MoveUnit.MilliSeconds) { this.init(); speed = Math.clamp(-100, 100, speed >> 0) * this.invertedFactor(); if (!speed) { this.stop(); return; } turnRatio = Math.clamp(-200, 200, turnRatio >> 0); let useSteps: boolean; let stepsOrTime: number; switch (unit) { case MoveUnit.Rotations: if (value < 0) { value = -value; speed = -speed; } stepsOrTime = (value * 360) >> 0; useSteps = true; break; case MoveUnit.Degrees: if (value < 0) { value = -value; speed = -speed; } stepsOrTime = value >> 0; useSteps = true; break; case MoveUnit.Seconds: stepsOrTime = (value * 1000) >> 0; useSteps = false; break; default: stepsOrTime = value >> 0; useSteps = false; break; } syncMotors(this._port, { useSteps: useSteps, speed: speed, turnRatio: turnRatio, stepsOrTime: stepsOrTime, useBrake: this._brake }); this.pauseOnRun(stepsOrTime); } /** * Returns the name(s) of the motor */ //% toString(): string { this.init(); let r = outputToName(this._port); for (let i = 0; i < DAL.NUM_OUTPUTS; ++i) { if (this._port & (1 << i)) { r += ` ${getMotorData(1 << i).actualSpeed}%` } } return r; } } //% whenUsed fixedInstance block="B+C" jres=icons.portBC export const largeBC = new SynchedMotorPair(Output.BC); //% whenUsed fixedInstance block="A+D" jres=icons.portAD export const largeAD = new SynchedMotorPair(Output.AD); //% whenUsed fixedInstance block="A+B" jres=icons.portAB export const largeAB = new SynchedMotorPair(Output.AB); //% whenUsed fixedInstance block="C+D" jres=icons.portCD export const largeCD = new SynchedMotorPair(Output.CD); function reset(out: Output) { writePWM(mkCmd(out, DAL.opOutputReset, 0)) writePWM(mkCmd(out, DAL.opOutputClearCount, 0)) } function outOffset(out: Output) { for (let i = 0; i < DAL.NUM_OUTPUTS; ++i) { if (out & (1 << i)) return i * MotorDataOff.Size } return 0 } export interface MotorData { actualSpeed: number; // -100..+100 tachoCount: number; count: number; } // only a single output at a time function getMotorData(out: Output): MotorData { init() const buf = motorMM.slice(outOffset(out), MotorDataOff.Size) return { actualSpeed: buf.getNumber(NumberFormat.Int8LE, MotorDataOff.Speed), tachoCount: buf.getNumber(NumberFormat.Int32LE, MotorDataOff.TachoCounts), count: buf.getNumber(NumberFormat.Int32LE, MotorDataOff.TachoSensor), } } export function getAllMotorData(): MotorData[] { init(); return [Output.A, Output.B, Output.C, Output.D].map(out => getMotorData(out)); } interface SyncOptions { useSteps?: boolean; speed: number; turnRatio: number; stepsOrTime?: number; useBrake?: boolean; } function syncMotors(out: Output, opts: SyncOptions) { const cmd = opts.useSteps ? DAL.opOutputStepSync : DAL.opOutputTimeSync; const b = mkCmd(out, cmd, 11); const speed = Math.clamp(-100, 100, opts.speed); const turnRatio = Math.clamp(-200, 200, opts.turnRatio); b.setNumber(NumberFormat.Int8LE, 2, speed) // note that b[3] is padding b.setNumber(NumberFormat.Int16LE, 4 + 4 * 0, turnRatio) // b[6], b[7] is padding b.setNumber(NumberFormat.Int32LE, 4 + 4 * 1, opts.stepsOrTime || 0) b.setNumber(NumberFormat.Int8LE, 4 + 4 * 2, opts.useBrake ? 1 : 0) writePWM(b) } interface StepOptions { power?: number; speed?: number; // either speed or power has to be present step1: number; step2: number; step3: number; useSteps?: boolean; // otherwise use milliseconds useBrake?: boolean; } function start(out: Output) { const b = mkCmd(out, DAL.opOutputStart, 0) writePWM(b); } function stop(out: Output, brake: boolean) { const b = mkCmd(out, DAL.opOutputStop, 1) b.setNumber(NumberFormat.UInt8LE, 2, brake ? 1 : 0) writePWM(b); } function step(out: Output, opts: StepOptions) { control.dmesg('step') let op = opts.useSteps ? DAL.opOutputStepSpeed : DAL.opOutputTimeSpeed let speed = opts.speed if (undefined == speed) { speed = opts.power op = opts.useSteps ? DAL.opOutputStepPower : DAL.opOutputTimePower if (undefined == speed) return } speed = Math.clamp(-100, 100, speed) let b = mkCmd(out, op, 15) b.setNumber(NumberFormat.Int8LE, 2, speed) // note that b[3] is padding b.setNumber(NumberFormat.Int32LE, 4 + 4 * 0, opts.step1) b.setNumber(NumberFormat.Int32LE, 4 + 4 * 1, opts.step2) b.setNumber(NumberFormat.Int32LE, 4 + 4 * 2, opts.step3) const br = !!opts.useBrake ? 1 : 0; b.setNumber(NumberFormat.Int8LE, 4 + 4 * 3, br) writePWM(b) } }