enum Output { //% block="A" A = 0x01, //% block="B" B = 0x02, //% block="C" C = 0x04, //% block="D" D = 0x08, //% block="B+C" BC = Output.B | Output.C, //% block="A+B" AB = Output.A | Output.B, //% block="C+D" CD = Output.C | Output.D, //% block="A+D" AD = Output.B | Output.C, //% block="All" ALL = 0x0f } enum OutputType { None = 0, Tacho = 7, MiniTacho = 8, } enum MoveUnit { //% block="rotations" Rotations, //% block="degrees" Degrees, //% block="seconds" Seconds } namespace motors { let pwmMM: MMap let motorMM: MMap const enum MotorDataOff { TachoCounts = 0, // int32 Speed = 4, // int8 Padding = 5, // int8[3] TachoSensor = 8, // int32 Size = 12 } function init() { if (pwmMM) return pwmMM = control.mmap("/dev/lms_pwm", 0, 0) if (!pwmMM) control.fail("no PWM file") motorMM = control.mmap("/dev/lms_motor", MotorDataOff.Size * DAL.NUM_OUTPUTS, 0) if (!motorMM) control.fail("no motor file") resetMotors() let buf = output.createBuffer(1) buf[0] = DAL.opProgramStart writePWM(buf) } function writePWM(buf: Buffer): void { init() pwmMM.write(buf) } function readPWM(buf: Buffer): void { init() pwmMM.read(buf); } function mkCmd(out: Output, cmd: number, addSize: number) { const b = output.createBuffer(2 + addSize) b.setNumber(NumberFormat.UInt8LE, 0, cmd) b.setNumber(NumberFormat.UInt8LE, 1, out) return b } function resetMotors() { reset(Output.ALL) } /** * Stops all motors */ //% blockId=motorStopAll block="stop all motors" //% weight=97 //% group="Motion" export function stopAllMotors() { const b = mkCmd(Output.ALL, DAL.opOutputStop, 0) writePWM(b) } //% fixedInstances export class Motor extends control.Component { protected _port: Output; protected _brake: boolean; constructor(port: Output) { super(); this._port = port; this._brake = false; } /** * Lazy initialization code */ protected __init() { } /** * Gets the port where this motor is connected */ //% //% group="Motion" port(): Output { this.__init(); return this._port; } /** * Sets the automatic brake on or off when the motor is off * @param brake a value indicating if the motor should break when off */ //% blockId=outputMotorSetBrakeMode block="set `icons.motorLarge` %motor|brake %brake" //% brake.fieldEditor=toggleonoff //% weight=60 blockGap=8 //% group="Motion" setBrake(brake: boolean) { this.__init(); this._brake = brake; } /** * Reverses the motor polarity */ //% blockId=motorSetReversed block="set `icons.motorLarge` %motor|reversed %reversed" //% reversed.fieldEditor=toggleonoff //% weight=59 //% group="Motion" setReversed(reversed: boolean) { this.__init(); const b = mkCmd(this._port, DAL.opOutputPolarity, 1) b.setNumber(NumberFormat.Int8LE, 2, reversed ? -1 : 1); writePWM(b) } /** * Stops the motor(s). */ //% stop() { this.__init(); stop(this._port, this._brake); } /** * Resets the motor(s). */ //% reset() { this.__init(); reset(this._port); } /** * Sets the speed of the motor. * @param speed the speed from ``100`` full forward to ``-100`` full backward, eg: 50 */ //% blockId=motorSetSpeed block="set speed of `icons.motorLarge` %motor|to %speed|%" //% on.fieldEditor=toggleonoff //% weight=99 blockGap=8 //% speed.min=-100 speed.max=100 //% group="Motion" setSpeed(speed: number) { this.__init(); speed = Math.clamp(-100, 100, speed >> 0); if (!speed) // always stop this.stop(); else this.__setSpeed(speed); } protected __setSpeed(speed: number) { } /** * Moves the motor by a number of rotations, degress or seconds * @param value the move quantity, eg: 2 * @param unit the meaning of the value * @param speed the speed from ``100`` full forward to ``-100`` full backward, eg: 50 */ //% blockId=motorMove block="move `icons.motorLarge` %motor|for %value|%unit|at %speed|%" //% weight=98 blockGap=8 //% speed.min=-100 speed.max=100 //% group="Motion" move(value: number, unit: MoveUnit, speed: number) { this.__init(); speed = Math.clamp(-100, 100, speed >> 0); if (!speed) { this.stop(); return; } let useSteps: boolean; let stepsOrTime: number; switch (unit) { case MoveUnit.Rotations: stepsOrTime = (value * 360) >> 0; useSteps = true; break; case MoveUnit.Degrees: stepsOrTime = value >> 0; useSteps = true; break; default: stepsOrTime = value; useSteps = false; break; } this.__move(useSteps, stepsOrTime, speed); } protected __move(steps: boolean, stepsOrTime: number, speed: number) { } } //% fixedInstances export class SingleMotor extends Motor { private _large: boolean; private _initialized: boolean; constructor(port: Output, large: boolean) { super(port); this._large = large; this.markUsed(); } markUsed() { motors.__motorUsed(this._port, this._large); } protected __init() { if (!this._initialized) { this._initialized = true; // specify motor size on this port const b = mkCmd(this._port, DAL.opOutputSetType, 1) b.setNumber(NumberFormat.Int8LE, 2, this._large ? 0x07 : 0x08) writePWM(b) } } protected __setSpeed(speed: number) { const b = mkCmd(this._port, DAL.opOutputSpeed, 1) b.setNumber(NumberFormat.Int8LE, 2, speed) writePWM(b) } protected __move(steps: boolean, stepsOrTime: number, speed: number) { step(this._port, { useSteps: steps, step1: 0, step2: stepsOrTime, step3: 0, speed: speed, useBrake: this._brake }) } /** * Gets motor actual speed. * @param motor the port which connects to the motor */ //% blockId=motorSpeed block="`icons.motorLarge` %motor|speed" //% weight=72 blockGap=8 //% group="Sensors" speed(): number { this.__init(); return getMotorData(this._port).actualSpeed; } /** * Gets motor step count. * @param motor the port which connects to the motor */ //% blockId=motorCount block="`icons.motorLarge` %motor|count" //% weight=71 blockGap=8 //% group="Sensors" count(): number { this.__init(); return getMotorData(this._port).count; } /** * Gets motor tacho count. * @param motor the port which connects to the motor */ //% blockId=motorTachoCount block="`icons.motorLarge` %motor|tacho count" //% weight=70 //% group="Sensors" tachoCount(): number { this.__init(); return getMotorData(this._port).tachoCount; } /** * Clears the motor count */ //% group="Motion" clearCount() { this.__init(); const b = mkCmd(this._port, DAL.opOutputClearCount, 0) writePWM(b) for (let i = 0; i < DAL.NUM_OUTPUTS; ++i) { if (this._port & (1 << i)) { motorMM.setNumber(NumberFormat.Int32LE, i * MotorDataOff.Size + MotorDataOff.TachoSensor, 0) } } } } //% whenUsed fixedInstance block="large A" export const largeA = new SingleMotor(Output.A, true); //% whenUsed fixedInstance block="large B" export const largeB = new SingleMotor(Output.B, true); //% whenUsed fixedInstance block="large C" export const largeC = new SingleMotor(Output.C, true); //% whenUsed fixedInstance block="large D" export const largeD = new SingleMotor(Output.D, true); //% whenUsed fixedInstance block="medium A" export const mediumA = new SingleMotor(Output.A, false); //% whenUsed fixedInstance block="medium B" export const mediumB = new SingleMotor(Output.B, false); //% whenUsed fixedInstance block="medium C" export const mediumC = new SingleMotor(Output.C, false); //% whenUsed fixedInstance block="medium D" export const mediumD = new SingleMotor(Output.D, false); //% fixedInstances export class SynchedMotorPair extends Motor { private _initialized: boolean; constructor(ports: Output) { super(ports); this.markUsed(); } markUsed() { motors.__motorUsed(this._port, true); } protected __init() { if (!this._initialized) { this._initialized = true; const b = mkCmd(this._port, DAL.opOutputSetType, 1) b.setNumber(NumberFormat.Int8LE, 2, 0x07) // large motor writePWM(b) } } protected __setSpeed(speed: number) { syncMotors(this._port, { speed: speed, turnRatio: 0, useBrake: !!this._brake }) } protected __move(steps: boolean, stepsOrTime: number, speed: number) { syncMotors(this._port, { useSteps: steps, speed: speed, turnRatio: 100, // same speed stepsOrTime: stepsOrTime, useBrake: this._brake }); } /** * Turns the motor and the follower motor by a number of rotations * @param value the move quantity, eg: 2 * @param unit the meaning of the value * @param steering the ratio of power sent to the follower motor, from ``-100`` to ``100`` * @param speed the speed from ``100`` full forward to ``-100`` full backward, eg: 50 */ //% blockId=motorPairTurn block="steer %chassis|%steering|%|at speed %speed|%|by %value|%unit" //% weight=9 blockGap=8 //% steering.min=-100 steering=100 //% inlineInputMode=inline //% group="Chassis" steer(steering: number, speed: number, value: number, unit: MoveUnit) { speed = Math.clamp(-100, 100, speed >> 0); if (!speed) { stop(this._port, this._brake); return; } const turnRatio = Math.clamp(-200, 200, steering + 100 >> 0); let useSteps: boolean; let stepsOrTime: number; switch (unit) { case MoveUnit.Rotations: stepsOrTime = (value * 360) >> 0; useSteps = true; break; case MoveUnit.Degrees: stepsOrTime = value >> 0; useSteps = true; break; default: stepsOrTime = value; useSteps = false; break; } syncMotors(this._port, { useSteps: useSteps, speed: speed, turnRatio: turnRatio, stepsOrTime: stepsOrTime, useBrake: this._brake }); } /** * The Move Tank block can make a robot drive forward, backward, turn, or stop. * Use the Move Tank block for robot vehicles that have two Large Motors, * with one motor driving the left side of the vehicle and the other the right side. * You can make the two motors go at different speeds or in different directions * to make your robot turn. * @param value the amount of movement, eg: 2 * @param unit * @param speedLeft the speed on the left motor, eg: 50 * @param speedRight the speed on the right motor, eg: 50 */ //% blockId=motorPairTank block="tank %chassis|left %speedLeft|%|right %speedRight|%|by %value|%unit" //% weight=9 blockGap=8 //% speedLeft.min=-100 speedLeft=100 //% speedRight.min=-100 speedRight=100 //% inlineInputMode=inline //% group="Chassis" tank(speedLeft: number, speedRight: number, value: number, unit: MoveUnit) { speedLeft = Math.clamp(speedLeft >> 0, -100, 100); speedRight = Math.clamp(speedRight >> 0, -100, 100); const steering = (speedRight * 100 / speedLeft) >> 0; this.steer(speedLeft, steering, value, unit); } } //% whenUsed fixedInstance block="large B+C" export const largeBC = new SynchedMotorPair(Output.BC); //% whenUsed fixedInstance block="large A+D" export const largeAD = new SynchedMotorPair(Output.AD); //% whenUsed fixedInstance block="large A+B" export const largeAB = new SynchedMotorPair(Output.AB); //% whenUsed fixedInstance block="large C+D" export const largeCD = new SynchedMotorPair(Output.CD); function reset(out: Output) { let b = mkCmd(out, DAL.opOutputReset, 0) writePWM(b) } function outOffset(out: Output) { for (let i = 0; i < DAL.NUM_OUTPUTS; ++i) { if (out & (1 << i)) return i * MotorDataOff.Size } return 0 } interface MotorData { actualSpeed: number; // -100..+100 tachoCount: number; count: number; } // only a single output at a time function getMotorData(out: Output): MotorData { init() let buf = motorMM.slice(outOffset(out), MotorDataOff.Size) return { actualSpeed: buf.getNumber(NumberFormat.Int8LE, MotorDataOff.Speed), tachoCount: buf.getNumber(NumberFormat.Int32LE, MotorDataOff.TachoCounts), count: buf.getNumber(NumberFormat.Int32LE, MotorDataOff.TachoSensor), } } interface SyncOptions { useSteps?: boolean; speed: number; turnRatio: number; stepsOrTime?: number; useBrake?: boolean; } function syncMotors(out: Output, opts: SyncOptions) { const cmd = opts.useSteps ? DAL.opOutputStepSync : DAL.opOutputTimeSync; const b = mkCmd(out, cmd, 11); const speed = Math.clamp(-100, 100, opts.speed); const turnRatio = Math.clamp(-200, 200, opts.turnRatio); b.setNumber(NumberFormat.Int8LE, 2, speed) // note that b[3] is padding b.setNumber(NumberFormat.Int16LE, 4 + 4 * 0, turnRatio) // b[6], b[7] is padding b.setNumber(NumberFormat.Int32LE, 4 + 4 * 1, opts.stepsOrTime || 0) b.setNumber(NumberFormat.Int8LE, 4 + 4 * 2, opts.useBrake ? 1 : 0) writePWM(b) } interface StepOptions { power?: number; speed?: number; // either speed or power has to be present step1: number; step2: number; step3: number; useSteps?: boolean; // otherwise use milliseconds useBrake?: boolean; } function start(out: Output) { const b = mkCmd(out, DAL.opOutputStart, 0) writePWM(b); } function stop(out: Output, brake: boolean) { const b = mkCmd(out, DAL.opOutputStop, 1) b.setNumber(NumberFormat.UInt8LE, 2, brake ? 1 : 0) writePWM(b); } function step(out: Output, opts: StepOptions) { let op = opts.useSteps ? DAL.opOutputStepSpeed : DAL.opOutputTimeSpeed let speed = opts.speed if (speed == null) { speed = opts.power op = opts.useSteps ? DAL.opOutputStepPower : DAL.opOutputTimePower if (speed == null) return } speed = Math.clamp(-100, 100, speed) let b = mkCmd(out, op, 15) b.setNumber(NumberFormat.Int8LE, 2, speed) // note that b[3] is padding b.setNumber(NumberFormat.Int32LE, 4 + 4 * 0, opts.step1) b.setNumber(NumberFormat.Int32LE, 4 + 4 * 1, opts.step2) b.setNumber(NumberFormat.Int32LE, 4 + 4 * 2, opts.step3) b.setNumber(NumberFormat.Int8LE, 4 + 4 * 3, opts.useBrake ? 1 : 0) writePWM(b) } const types = [0, 0, 0, 0] export function setType(out: Output, type: OutputType) { let b = mkCmd(out, DAL.opOutputSetType, 3) for (let i = 0; i < 4; ++i) { if (out & (1 << i)) { types[i] = type } b.setNumber(NumberFormat.UInt8LE, i + 1, types[i]) } writePWM(b) } } interface Buffer { [index: number]: number; // rest defined in buffer.cpp }