enum Output { A = 0x01, B = 0x02, C = 0x04, D = 0x08, ALL = 0x0f } enum OutputType { None = 0, Tacho = 7, MiniTacho = 8, } namespace output { let pwmMM: MMap let motorMM: MMap const enum MotorDataOff { TachoCounts = 0, // int32 Speed = 4, // int8 Padding = 5, // int8[3] TachoSensor = 8, // int32 Size = 12 } function init() { if (pwmMM) return pwmMM = control.mmap("/dev/lms_pwm", 0, 0) if (!pwmMM) control.fail("no PWM file") motorMM = control.mmap("/dev/lms_motor", MotorDataOff.Size * DAL.NUM_OUTPUTS, 0) stop(Output.ALL) let buf = output.createBuffer(1) buf[0] = DAL.opProgramStart writePWM(buf) } function writePWM(buf: Buffer): void { init() pwmMM.write(buf) } function readPWM(buf: Buffer): void { init() pwmMM.read(buf); } function mkCmd(out: Output, cmd: number, addSize: number) { let b = createBuffer(2 + addSize) b.setNumber(NumberFormat.UInt8LE, 0, cmd) b.setNumber(NumberFormat.UInt8LE, 1, out) return b } /** * Turn a motor on for a specified number of milliseconds. * @param out the output connection that the motor is connected to * @param ms the number of milliseconds to turn the motor on, eg: 500 * @param useBrake whether or not to use the brake, defaults to false */ //% blockId=output_turn block="turn motor %out| on for %ms|milliseconds" //% weight=100 group="Motors" export function turn(out: Output, ms: number, useBrake = false) { // TODO: use current power / speed configuration output.step(out, { power: 100, step1: 0, step2: ms, step3: 0, useBrake: useBrake }) } /** * Turn motor off. * @param out the output connection that the motor is connected to */ //% blockId=output_stop block="turn motor %out|off" //% weight=90 group="Motors" export function stop(out: Output, useBrake = false) { let b = mkCmd(out, DAL.opOutputStop, 1) b.setNumber(NumberFormat.UInt8LE, 2, useBrake ? 1 : 0) writePWM(b) } /** * Turn motor on. * @param out the output connection that the motor is connected to */ //% blockId=output_start block="turn motor %out|on" //% weight=95 group="Motors" export function start(out: Output) { let b = mkCmd(out, DAL.opOutputStart, 0) writePWM(b) } export function reset(out: Output) { let b = mkCmd(out, DAL.opOutputReset, 0) writePWM(b) } export function clearCount(out: Output) { let b = mkCmd(out, DAL.opOutputClearCount, 0) writePWM(b) for (let i = 0; i < DAL.NUM_OUTPUTS; ++i) { if (out & (1 << i)) { motorMM.setNumber(NumberFormat.Int32LE, i * MotorDataOff.Size + MotorDataOff.TachoSensor, 0) } } } function outOffset(out: Output) { for (let i = 0; i < DAL.NUM_OUTPUTS; ++i) { if (out & (1 << i)) return i * MotorDataOff.Size } return 0 } export interface MotorData { actualSpeed: number; // -100..+100 tachoCount: number; count: number; } // only a single output at a time export function getMotorData(out: Output): MotorData { let buf = motorMM.slice(outOffset(out), MotorDataOff.Size) return { actualSpeed: buf.getNumber(NumberFormat.Int8LE, MotorDataOff.Speed), tachoCount: buf.getNumber(NumberFormat.Int32LE, MotorDataOff.TachoCounts), count: buf.getNumber(NumberFormat.Int32LE, MotorDataOff.TachoSensor), } } /** * Get motor speed. * @param out the output connection that the motor is connected to */ //% blockId=output_getCurrentSpeed block="motor %out|speed" //% weight=70 group="Motors" export function getCurrentSpeed(out: Output) { return getMotorData(out).actualSpeed; } /** * Set motor speed. * @param out the output connection that the motor is connected to * @param speed the desired speed to use. eg: 100 */ //% blockId=output_setSpeed block="set motor %out| speed to %speed" //% weight=81 group="Motors" //% speed.min=-100 speed.max=100 export function setSpeed(out: Output, speed: number) { let b = mkCmd(out, DAL.opOutputSpeed, 1) b.setNumber(NumberFormat.Int8LE, 2, Math.clamp(-100, 100, speed)) writePWM(b) } /** * Set motor power. * @param out the output connection that the motor is connected to * @param power the desired power to use. eg: 100 */ //% blockId=output_setPower block="set motor %out| power to %power" //% weight=80 group="Motors" //% power.min=-100 power.max=100 export function setPower(out: Output, power: number) { let b = mkCmd(out, DAL.opOutputPower, 1) b.setNumber(NumberFormat.Int8LE, 2, Math.clamp(-100, 100, power)) writePWM(b) } export function setPolarity(out: Output, polarity: number) { let b = mkCmd(out, DAL.opOutputPolarity, 1) b.setNumber(NumberFormat.Int8LE, 2, Math.clamp(-1, 1, polarity)) writePWM(b) } export interface StepOptions { power?: number; speed?: number; // either speed or power has to be present step1: number; step2: number; step3: number; useSteps?: boolean; // otherwise use milliseconds useBrake?: boolean; } export function step(out: Output, opts: StepOptions) { let op = opts.useSteps ? DAL.opOutputStepSpeed : DAL.opOutputTimeSpeed let speed = opts.speed if (speed == null) { speed = opts.power op = opts.useSteps ? DAL.opOutputStepPower : DAL.opOutputTimePower if (speed == null) return } speed = Math.clamp(-100, 100, speed) let b = mkCmd(out, op, 15) b.setNumber(NumberFormat.Int8LE, 2, speed) // note that b[3] is padding b.setNumber(NumberFormat.Int32LE, 4 + 4 * 0, opts.step1) b.setNumber(NumberFormat.Int32LE, 4 + 4 * 1, opts.step2) b.setNumber(NumberFormat.Int32LE, 4 + 4 * 2, opts.step3) b.setNumber(NumberFormat.Int8LE, 4 + 4 * 3, opts.useBrake ? 1 : 0) writePWM(b) } const types = [0, 0, 0, 0] export function setType(out: Output, type: OutputType) { let b = mkCmd(out, DAL.opOutputSetType, 3) for (let i = 0; i < 4; ++i) { if (out & (1 << i)) { types[i] = type } b.setNumber(NumberFormat.UInt8LE, i + 1, types[i]) } writePWM(b) } } interface Buffer { [index: number]: number; // rest defined in buffer.cpp }