enum Output { //% block="A" A = 0x01, //% block="B" B = 0x02, //% block="C" C = 0x04, //% block="D" D = 0x08, //% block="B+C" BC = Output.B | Output.C, //% block="A+B" AB = Output.A | Output.B, //% block="C+D" CD = Output.C | Output.D, //% block="A+D" AD = Output.A | Output.D, //% block="All" ALL = 0x0f } enum OutputType { None = 0, Tacho = 7, MiniTacho = 8, } enum MoveUnit { //% block="rotations" Rotations, //% block="degrees" Degrees, //% block="milliseconds" MilliSeconds } namespace motors { let pwmMM: MMap let motorMM: MMap const enum MotorDataOff { TachoCounts = 0, // int32 Speed = 4, // int8 Padding = 5, // int8[3] TachoSensor = 8, // int32 Size = 12 } function init() { if (pwmMM) return pwmMM = control.mmap("/dev/lms_pwm", 0, 0) if (!pwmMM) control.fail("no PWM file") motorMM = control.mmap("/dev/lms_motor", MotorDataOff.Size * DAL.NUM_OUTPUTS, 0) if (!motorMM) control.fail("no motor file") resetAllMotors() const buf = output.createBuffer(1) buf[0] = DAL.opProgramStart writePWM(buf) } /** * Sends a command to the motors device * @param buf the command buffer */ //% export function writePWM(buf: Buffer): void { init() pwmMM.write(buf) } /** * Sends and receives a message from the motors device * @param buf message buffer */ //% export function readPWM(buf: Buffer): void { init() pwmMM.read(buf); } /** * Allocates a message buffer * @param out ports * @param cmd command id * @param addSize required additional bytes */ //% export function mkCmd(out: Output, cmd: number, addSize: number) { const b = output.createBuffer(2 + addSize) b.setNumber(NumberFormat.UInt8LE, 0, cmd) b.setNumber(NumberFormat.UInt8LE, 1, out) return b } function outputToName(out: Output): string { let r = ""; for (let i = 0; i < DAL.NUM_OUTPUTS; ++i) { if (out & (1 << i)) { if (r.length > 0) r += "+"; r += "ABCD"[i]; } } return r; } /** * Stops all motors */ //% blockId=motorStopAll block="stop all motors" //% weight=5 //% group="Motion" export function stopAllMotors() { const b = mkCmd(Output.ALL, DAL.opOutputStop, 0) writePWM(b) } /** * Resets all motors */ //% group="Motion" export function resetAllMotors() { reset(Output.ALL) } //% fixedInstances export class MotorBase extends control.Component { protected _port: Output; protected _portName: string; protected _brake: boolean; private _initialized: boolean; private _init: () => void; private _setSpeed: (speed: number) => void; private _move: (steps: boolean, stepsOrTime: number, speed: number) => void; constructor(port: Output, init: () => void, setSpeed: (speed: number) => void, move: (steps: boolean, stepsOrTime: number, speed: number) => void) { super(); this._port = port; this._portName = outputToName(this._port); this._brake = false; this._initialized = false; this._init = init; this._setSpeed = setSpeed; this._move = move; } /** * Lazy initialization code */ protected init() { if (!this._initialized) { this._initialized = true; this._init(); } } /** * Sets the automatic brake on or off when the motor is off * @param brake a value indicating if the motor should break when off */ //% blockId=outputMotorSetBrakeMode block="set %motor|brake %brake" //% brake.fieldEditor=toggleonoff //% weight=60 blockGap=8 //% group="Motion" setBrake(brake: boolean) { this.init(); this._brake = brake; } /** * Reverses the motor polarity */ //% blockId=motorSetReversed block="set %motor|reversed %reversed" //% reversed.fieldEditor=toggleonoff //% weight=59 //% group="Motion" setReversed(reversed: boolean) { this.init(); const b = mkCmd(this._port, DAL.opOutputPolarity, 1) b.setNumber(NumberFormat.Int8LE, 2, reversed ? 0 : 1); writePWM(b) } /** * Stops the motor(s). */ //% stop() { this.init(); stop(this._port, this._brake); } /** * Resets the motor(s). */ //% reset() { this.init(); reset(this._port); } /** * Sets the speed of the motor. * @param speed the speed from ``100`` full forward to ``-100`` full backward, eg: 50 */ //% blockId=motorSetSpeed block="set %motor|speed to %speed|%" //% on.fieldEditor=toggleonoff //% weight=99 blockGap=8 //% speed.min=-100 speed.max=100 //% group="Motion" setSpeed(speed: number) { this.init(); speed = Math.clamp(-100, 100, speed >> 0); if (!speed) // always stop this.stop(); else this._setSpeed(speed); } /** * Sets the motor speed for limited time or distance * @param speed the speed from ``100`` full forward to ``-100`` full backward, eg: 50 * @param value the move quantity, eg: 2 * @param unit the meaning of the value */ //% blockId=motorMove block="set %motor|speed to %speed|%|for %value|%unit" //% weight=98 blockGap=8 //% speed.min=-100 speed.max=100 //% group="Motion" setSpeedFor(speed: number, value: number, unit: MoveUnit) { this.init(); speed = Math.clamp(-100, 100, speed >> 0); if (!speed) { this.stop(); return; } let useSteps: boolean; let stepsOrTime: number; switch (unit) { case MoveUnit.Rotations: stepsOrTime = (value * 360) >> 0; useSteps = true; break; case MoveUnit.Degrees: stepsOrTime = value >> 0; useSteps = true; break; default: stepsOrTime = value; useSteps = false; break; } this._move(useSteps, stepsOrTime, speed); } /** * Returns a value indicating if the motor is still running a previous command. */ //% group="Sensors" isReady(): boolean { this.init(); const buf = mkCmd(this._port, DAL.opOutputTest, 2); readPWM(buf) const flags = buf.getNumber(NumberFormat.UInt8LE, 2); // TODO: FIX with ~ support for(let i = 0; i < DAL.NUM_OUTPUTS; ++i) { const flag = 1 << i; if ((this._port & flag) && (flags & flag)) return false; } return true; } /** * Pauses the execution until the previous command finished. * @param timeOut optional maximum pausing time in milliseconds */ //% blockId=motorPauseUntilRead block="%motor|pause until ready" //% weight=97 //% group="Motion" pauseUntilReady(timeOut?: number) { pauseUntil(() => this.isReady(), timeOut); } } //% fixedInstances export class Motor extends MotorBase { private _large: boolean; constructor(port: Output, large: boolean) { super(port, () => this.__init(), (speed) => this.__setSpeed(speed), (steps, stepsOrTime, speed) => this.__move(steps, stepsOrTime, speed)); this._large = large; this.markUsed(); } markUsed() { motors.__motorUsed(this._port, this._large); } private __init() { // specify motor size on this port const b = mkCmd(outOffset(this._port), DAL.opOutputSetType, 1) b.setNumber(NumberFormat.Int8LE, 2, this._large ? 0x07 : 0x08) writePWM(b) } private __setSpeed(speed: number) { const b = mkCmd(this._port, DAL.opOutputSpeed, 1) b.setNumber(NumberFormat.Int8LE, 2, speed) writePWM(b) if (speed) { writePWM(mkCmd(this._port, DAL.opOutputStart, 0)) } } private __move(steps: boolean, stepsOrTime: number, speed: number) { step(this._port, { useSteps: steps, step1: 0, step2: stepsOrTime, step3: 0, speed: speed, useBrake: this._brake }) } /** * Gets motor actual speed. * @param motor the port which connects to the motor */ //% blockId=motorSpeed block="%motor|speed" //% weight=72 //% blockGap=8 //% group="Counters" speed(): number { this.init(); return getMotorData(this._port).actualSpeed; } /** * Gets motor angle. * @param motor the port which connects to the motor */ //% blockId=motorAngle block="%motor|angle" //% weight=70 //% blockGap=8 //% group="Counters" angle(): number { this.init(); return getMotorData(this._port).count; } /** * Gets motor tachometer count. * @param motor the port which connects to the motor */ //% blockId=motorTachoCount block="%motor|tacho" //% weight=69 //% blockGap=8 //% group="Counters" tacho(): number { this.init(); return getMotorData(this._port).tachoCount; } /** * Clears the motor count */ //% blockId=motorClearCount block="%motor|clear counts" //% weight=68 //% blockGap=8 //% group="Counters" clearCounts() { this.init(); const b = mkCmd(this._port, DAL.opOutputClearCount, 0) writePWM(b) for (let i = 0; i < DAL.NUM_OUTPUTS; ++i) { if (this._port & (1 << i)) { motorMM.setNumber(NumberFormat.Int32LE, i * MotorDataOff.Size + MotorDataOff.TachoSensor, 0) } } } /** * Returns the status of the motor */ //% toString(): string { return `${this._large ? "" : "M"}${this._portName} ${this.speed()}% ${this.angle()}>`; } } //% whenUsed fixedInstance block="large A" export const largeA = new Motor(Output.A, true); //% whenUsed fixedInstance block="large B" export const largeB = new Motor(Output.B, true); //% whenUsed fixedInstance block="large C" export const largeC = new Motor(Output.C, true); //% whenUsed fixedInstance block="large D" export const largeD = new Motor(Output.D, true); //% whenUsed fixedInstance block="medium A" export const mediumA = new Motor(Output.A, false); //% whenUsed fixedInstance block="medium B" export const mediumB = new Motor(Output.B, false); //% whenUsed fixedInstance block="medium C" export const mediumC = new Motor(Output.C, false); //% whenUsed fixedInstance block="medium D" export const mediumD = new Motor(Output.D, false); //% fixedInstances export class SynchedMotorPair extends MotorBase { constructor(ports: Output) { super(ports, () => this.__init(), (speed) => this.__setSpeed(speed), (steps, stepsOrTime, speed) => this.__move(steps, stepsOrTime, speed)); this.markUsed(); } markUsed() { motors.__motorUsed(this._port, true); } private __init() { for (let i = 0; i < DAL.NUM_OUTPUTS; ++i) { if (this._port & (1 << i)) { const b = mkCmd(outOffset(1 << i), DAL.opOutputSetType, 1) b.setNumber(NumberFormat.Int8LE, 2, 0x07) // large motor writePWM(b) } } } private __setSpeed(speed: number) { syncMotors(this._port, { speed: speed, turnRatio: 100, // same speed useBrake: !!this._brake }) } private __move(steps: boolean, stepsOrTime: number, speed: number) { syncMotors(this._port, { useSteps: steps, speed: speed, turnRatio: 100, // same speed stepsOrTime: stepsOrTime, useBrake: this._brake }); } /** * The Move Tank block can make a robot drive forward, backward, turn, or stop. * Use the Move Tank block for robot vehicles that have two Large Motors, * with one motor driving the left side of the vehicle and the other the right side. * You can make the two motors go at different speeds or in different directions * to make your robot turn. * @param speedLeft the speed on the left motor, eg: 50 * @param speedRight the speed on the right motor, eg: 50 */ //% blockId=motorPairTank block="tank %motors|%speedLeft|%|%speedRight|%" //% weight=20 blockGap=8 //% group="Sync Motion" tank(speedLeft: number, speedRight: number) { this.tankFor(speedLeft, speedRight, 0, MoveUnit.Degrees); } /** * The Move Tank block can make a robot drive forward, backward, turn, or stop. * Use the Move Tank block for robot vehicles that have two Large Motors, * with one motor driving the left side of the vehicle and the other the right side. * You can make the two motors go at different speeds or in different directions * to make your robot turn. * @param speedLeft the speed on the left motor, eg: 50 * @param speedRight the speed on the right motor, eg: 50 * @param value the amount of movement, eg: 2 * @param unit the unit of the value */ //% blockId=motorPairTankFor block="tank %motors|%speedLeft|%|%speedRight|%|for %value|%unit" //% weight=19 //% speedLeft.min=-100 speedLeft=100 //% speedRight.min=-100 speedRight=100 //% inlineInputMode=inline //% group="Sync Motion" tankFor(speedLeft: number, speedRight: number, value: number, unit: MoveUnit) { this.init(); speedLeft = Math.clamp(-100, 100, speedLeft >> 0); speedRight = Math.clamp(-100, 100, speedRight >> 0); const speed = Math.abs(speedLeft) > Math.abs(speedRight) ? speedLeft : speedRight; const turnRatio = speedLeft == speed ? (100 - speedRight / speedLeft * 100) : (speedLeft / speedRight * 100 - 100); this.steerFor(turnRatio, speed, value, unit); } /** * Turns the motor and the follower motor by a number of rotations * @param turnRatio the ratio of power sent to the follower motor, from ``-200`` to ``200``, eg: 0 * @param speed the speed from ``100`` full forward to ``-100`` full backward, eg: 50 * @param value the move quantity, eg: 2 * @param unit the meaning of the value */ //% blockId=motorPairSteer block="steer %chassis|turn ratio %turnRatio|speed %speed|%" //% weight=7 blockGap=8 //% turnRatio.min=-200 turnRatio=200 //% inlineInputMode=inline //% group="Sync Motion" steer(turnRatio: number, speed: number) { this.steer(turnRatio, speed); } /** * Turns the motor and the follower motor by a number of rotations * @param turnRatio the ratio of power sent to the follower motor, from ``-200`` to ``200``, eg: 0 * @param speed the speed from ``100`` full forward to ``-100`` full backward, eg: 50 * @param value the move quantity, eg: 2 * @param unit the meaning of the value */ //% blockId=motorPairSteerFor block="steer %chassis|turn ratio %turnRatio|speed %speed|%|for %value|%unit" //% weight=6 blockGap=8 //% turnRatio.min=-200 turnRatio=200 //% inlineInputMode=inline //% group="Sync Motion" steerFor(turnRatio: number, speed: number, value: number, unit: MoveUnit) { this.init(); speed = Math.clamp(-100, 100, speed >> 0); if (!speed) { stop(this._port, this._brake); return; } turnRatio = Math.clamp(-200, 200, turnRatio >> 0); let useSteps: boolean; let stepsOrTime: number; switch (unit) { case MoveUnit.Rotations: stepsOrTime = (value * 360) >> 0; useSteps = true; break; case MoveUnit.Degrees: stepsOrTime = value >> 0; useSteps = true; break; default: stepsOrTime = value >> 0; useSteps = false; break; } syncMotors(this._port, { useSteps: useSteps, speed: speed, turnRatio: turnRatio, stepsOrTime: stepsOrTime, useBrake: this._brake }); } /** * Returns the name(s) of the motor */ //% toString(): string { this.init(); let r = outputToName(this._port); for (let i = 0; i < DAL.NUM_OUTPUTS; ++i) { if (this._port & (1 << i)) { r += ` ${getMotorData(1 << i).actualSpeed}%` } } return r; } } //% whenUsed fixedInstance block="large B+C" export const largeBC = new SynchedMotorPair(Output.BC); //% whenUsed fixedInstance block="large A+D" export const largeAD = new SynchedMotorPair(Output.AD); //% whenUsed fixedInstance block="large A+B" export const largeAB = new SynchedMotorPair(Output.AB); //% whenUsed fixedInstance block="large C+D" export const largeCD = new SynchedMotorPair(Output.CD); function reset(out: Output) { writePWM(mkCmd(out, DAL.opOutputReset, 0)) writePWM(mkCmd(out, DAL.opOutputClearCount, 0)) } function outOffset(out: Output) { for (let i = 0; i < DAL.NUM_OUTPUTS; ++i) { if (out & (1 << i)) return i * MotorDataOff.Size } return 0 } export interface MotorData { actualSpeed: number; // -100..+100 tachoCount: number; count: number; } // only a single output at a time function getMotorData(out: Output): MotorData { init() const buf = motorMM.slice(outOffset(out), MotorDataOff.Size) return { actualSpeed: buf.getNumber(NumberFormat.Int8LE, MotorDataOff.Speed), tachoCount: buf.getNumber(NumberFormat.Int32LE, MotorDataOff.TachoCounts), count: buf.getNumber(NumberFormat.Int32LE, MotorDataOff.TachoSensor), } } export function getAllMotorData(): MotorData[] { init(); return [Output.A, Output.B, Output.C, Output.D].map(out => getMotorData(out)); } interface SyncOptions { useSteps?: boolean; speed: number; turnRatio: number; stepsOrTime?: number; useBrake?: boolean; } function syncMotors(out: Output, opts: SyncOptions) { const cmd = opts.useSteps ? DAL.opOutputStepSync : DAL.opOutputTimeSync; const b = mkCmd(out, cmd, 11); const speed = Math.clamp(-100, 100, opts.speed); const turnRatio = Math.clamp(-200, 200, opts.turnRatio); b.setNumber(NumberFormat.Int8LE, 2, speed) // note that b[3] is padding b.setNumber(NumberFormat.Int16LE, 4 + 4 * 0, turnRatio) // b[6], b[7] is padding b.setNumber(NumberFormat.Int32LE, 4 + 4 * 1, opts.stepsOrTime || 0) b.setNumber(NumberFormat.Int8LE, 4 + 4 * 2, opts.useBrake ? 1 : 0) writePWM(b) } interface StepOptions { power?: number; speed?: number; // either speed or power has to be present step1: number; step2: number; step3: number; useSteps?: boolean; // otherwise use milliseconds useBrake?: boolean; } function start(out: Output) { const b = mkCmd(out, DAL.opOutputStart, 0) writePWM(b); } function stop(out: Output, brake: boolean) { const b = mkCmd(out, DAL.opOutputStop, 1) b.setNumber(NumberFormat.UInt8LE, 2, brake ? 1 : 0) writePWM(b); } function step(out: Output, opts: StepOptions) { let op = opts.useSteps ? DAL.opOutputStepSpeed : DAL.opOutputTimeSpeed let speed = opts.speed if (speed == null) { speed = opts.power op = opts.useSteps ? DAL.opOutputStepPower : DAL.opOutputTimePower if (speed == null) return } speed = Math.clamp(-100, 100, speed) let b = mkCmd(out, op, 15) b.setNumber(NumberFormat.Int8LE, 2, speed) // note that b[3] is padding b.setNumber(NumberFormat.Int32LE, 4 + 4 * 0, opts.step1) b.setNumber(NumberFormat.Int32LE, 4 + 4 * 1, opts.step2) b.setNumber(NumberFormat.Int32LE, 4 + 4 * 2, opts.step3) b.setNumber(NumberFormat.Int8LE, 4 + 4 * 3, opts.useBrake ? 1 : 0) writePWM(b) } const types = [0, 0, 0, 0] export function setType(out: Output, type: OutputType) { let b = mkCmd(out, DAL.opOutputSetType, 3) for (let i = 0; i < 4; ++i) { if (out & (1 << i)) { types[i] = type } b.setNumber(NumberFormat.UInt8LE, i + 1, types[i]) } writePWM(b) } } interface Buffer { [index: number]: number; // rest defined in buffer.cpp }