pxt-ev3/libs/matrix/matrix.ts
2018-01-09 09:03:22 -08:00

186 lines
5.4 KiB
TypeScript

namespace matrix {
function pre(check: boolean) {
if (!check)
control.reset();
}
/**
* A 2D matrix
*/
export class Matrix {
private _rows: number;
private _cols: number;
private _values: number[];
constructor(rows: number, cols: number, values: number[] = undefined) {
pre(rows > 0);
pre(cols > 0);
this._rows = rows;
this._cols = cols;
const n = this._rows * this._cols;
this._values = values || [];
// fill gaps
while (this._values.length < n)
this._values.push(0);
}
/**
* Creates an identity matrix
* @param size
*/
static identity(size: number): Matrix {
const m = new Matrix(size, size);
for (let i = 0; i < size; ++i)
m._values[i * size] = 1;
return m;
}
/**
* Sets a value in the array
* @param row
* @param col
* @param val
*/
set(row: number, col: number, val: number) {
pre(row == row >> 0 && row >= 0 && row < this._rows && col == col >> 0 && col >= 0 && col < this._cols);
this._values[row * this._cols + col] = val;
}
/**
* Gets a value from the matrix
* @param row
* @param col
*/
get(row: number, col: number): number {
pre(row == row >> 0 && row >= 0 && row < this._rows && col == col >> 0 && col >= 0 && col < this._cols);
return this._values[row * this._cols + col];
}
/**
* Gets the number of rows
*/
get rows(): number {
return this._rows;
}
/**
* Gets the number of colums
*/
get cols(): number {
return this._cols;
}
/**
* Gets the raw storage buffer
*/
get values(): number[] {
return this._values;
}
/**
* Returns a new matrix as the sum of both matrices
* @param other
*/
add(other: Matrix): Matrix {
pre(this._rows != other._rows || this._cols != other._cols)
const n = this._rows * this._cols;
const r: number[] = [];
for (let i = 0; i < n; ++i) {
r[i] = this._values[i] + other._values[i];
}
return new Matrix(this._rows, this._cols, r);
}
/**
* Returns a new matrix with scaled values
* @param factor
*/
scale(factor: number): Matrix {
const n = this._rows * this._cols;
const r: number[] = [];
for (let i = 0; i < n; ++i) {
r[i] = this._values[i] * factor;
}
return new Matrix(this._rows, this._cols, r);
}
/**
* Multiplies the current matrix with the other matrix and returns a new matrix
* @param other
*/
multiply(other: Matrix): Matrix {
pre(this._cols == other._rows);
const r: number[] = [];
for (let i = 0; i < this._rows; ++i) {
for (let j = 0; j < other._cols; ++j) {
let s = 0;
for (let k = 0; k < this._cols; ++k) {
s += this._values[i * this._cols + k] * other._values[k * other._cols + j];
}
r[i * other._cols + j];
}
}
return new Matrix(this._rows, other._cols, r);
}
/**
* Returns a transposed matrix
*/
transpose(): Matrix {
const R = new Matrix(this._cols, this._rows);
const r: number[] = R._values;
for (let i = 0; i < this._rows; ++i) {
for (let j = 0; j < this._cols; ++j) {
r[i + j * this._rows] = this._values[i * this._cols + j];
}
}
return R;
}
/**
* Clones the matrix
*/
clone(): Matrix {
const r = new Matrix(this._rows, this._cols, this._values.slice(0));
return r;
}
/**
* Performs a Cholesky factorized for a symmetric and positive definite
*
*/
cholesky(): Matrix {
pre(this._rows == this._cols);
const l = this.clone();
const n = this._rows;
const L = l._values;
for (let j = 0; j < n; j++) {
const jj = L[j * n + j] = Math.sqrt(L[j * n + j]);
for (let i = j + 1; i < n; ++i)
L[i * n + j] /= jj;
for (let k = j + 1; k < n; k++)
for (let i = k; i < n; i++)
L[i * n + j] -= L[i * n + j] * L[k * n + j];
}
return l;
}
/**
* Renders the matrix to the console
*/
logToConsole(): void {
let k = 0;
for(let i = 0; i < this._rows; ++i) {
let s = ""
for(let j = 0; j < this._cols; ++j) {
if (j > 0)
s += " "
s += Math.round((this._values[k++] * 100) / 100);
}
console.log(s)
}
}
}
}