pxt-ev3/libs/core/input.ts
Peli de Halleux cc75ae57da indent issue
2019-10-12 15:38:19 -07:00

914 lines
30 KiB
TypeScript

namespace sensors.internal {
export class Poller {
private query: () => number;
private update: (previous: number, current: number) => void;
public interval: number;
private previousValue: number;
private currentValue: number;
private lastQuery: number; // track down the last time we did a query/update cycle
private lastPause: number; // track down the last time we pause in the sensor polling loop
constructor(interval: number, query: () => number, update: (previous: number, current: number) => void) {
this.interval = interval | 0;
this.query = query;
this.update = update;
this.poll();
}
poke(): void {
const now = control.millis();
if (now - this.lastQuery >= this.interval * 2)
this.queryAndUpdate(); // sensor poller is not allowed to run
if (now - this.lastPause >= this.interval * 5)
pause(1); // allow events to trigger
}
private queryAndUpdate() {
this.lastQuery = control.millis();
this.currentValue = this.query();
if (this.previousValue != this.currentValue) {
this.update(this.previousValue, this.currentValue);
this.previousValue = this.currentValue;
}
}
private poll() {
control.runInBackground(() => {
this.lastQuery = this.lastPause = control.millis();
this.previousValue = this.currentValue = this.query();
this.update(this.previousValue, this.currentValue);
while (true) {
this.lastPause = control.millis();
pause(this.interval);
this.queryAndUpdate();
}
})
}
}
export function bufferToString(buf: Buffer): string {
let s = ''
for (let i = 0; i < buf.length; i++)
s += String.fromCharCode(buf[i])
return s
}
let analogMM: MMap
let uartMM: MMap
let IICMM: MMap
let powerMM: MMap
let devcon: Buffer
let devPoller: Poller
let sensorInfos: SensorInfo[];
let batteryInfo: {
CinCnt: number;
CoutCnt: number;
VinCnt: number;
};
let batteryVMin: number;
let batteryVMax: number;
class SensorInfo {
port: number
sensor: Sensor
sensors: Sensor[]
connType: number
devType: number
iicid: string
poller: Poller;
constructor(p: number) {
this.port = p
this.connType = DAL.CONN_NONE
this.devType = DAL.DEVICE_TYPE_NONE
this.iicid = ''
this.sensors = []
this.poller = new Poller(25, () => this.query(), (prev, curr) => this.update(prev, curr));
}
poke() {
this.poller.poke();
}
private query() {
if (this.sensor) return this.sensor._query();
return 0;
}
private update(prev: number, curr: number) {
if (this.sensor) this.sensor._update(prev, curr)
}
}
function init() {
if (sensorInfos) return
sensorInfos = []
for (let i = 0; i < DAL.NUM_INPUTS; ++i) sensorInfos.push(new SensorInfo(i))
devcon = output.createBuffer(DevConOff.Size)
analogMM = control.mmap("/dev/lms_analog", AnalogOff.Size, 0)
if (!analogMM) control.fail("no analog sensor")
uartMM = control.mmap("/dev/lms_uart", UartOff.Size, 0)
if (!uartMM) control.fail("no uart sensor")
IICMM = control.mmap("/dev/lms_iic", IICOff.Size, 0)
if (!IICMM) control.fail("no iic sensor")
powerMM = control.mmap("/dev/lms_power", 2, 0)
devPoller = new Poller(250, () => { return hashDevices(); },
(prev, curr) => {
detectDevices();
});
}
export function getActiveSensors(): Sensor[] {
init();
return sensorInfos.filter(si => si.sensor && si.sensor.isActive()).map(si => si.sensor);
}
function readUartInfo(port: number, mode: number) {
let buf = output.createBuffer(UartCtlOff.Size)
buf[UartCtlOff.Port] = port
buf[UartCtlOff.Mode] = mode
uartMM.ioctl(IO.UART_READ_MODE_INFO, buf)
return buf
//let info = `t:${buf[TypesOff.Type]} c:${buf[TypesOff.Connection]} m:${buf[TypesOff.Mode]} n:${buf.slice(0, 12).toHex()}`
//serial.writeLine("UART " + port + " / " + mode + " - " + info)
}
export function readIICID(port: number) {
const buf = output.createBuffer(IICStr.Size)
buf[IICStr.Port] = port
IICMM.ioctl(IO.IIC_READ_TYPE_INFO, buf)
const manufacturer = bufferToString(buf.slice(IICStr.Manufacturer, 8))
const sensorType = bufferToString(buf.slice(IICStr.SensorType, 8))
return manufacturer + sensorType;
}
const ADC_REF = 5000 //!< [mV] maximal value on ADC
const ADC_RES = 4095 //!< [CNT] maximal count on ADC
// see c_ui.c
const SHUNT_IN = 0.11 // [Ohm]
const AMP_CIN = 22.0 // [Times]
const EP2_SHUNT_IN = 0.05 // [Ohm]
const EP2_AMP_CIN = 15.0 // [Times]
const SHUNT_OUT = 0.055 // [Ohm]
const AMP_COUT = 19.0 // [Times]
const VCE = 0.05 // [V]
const AMP_VIN = 0.5 // [Times]
const AVR_CIN = 300
const AVR_COUT = 30
const AVR_VIN = 30
// lms2012
const BATT_INDICATOR_HIGH = 7500 //!< Battery indicator high [mV]
const BATT_INDICATOR_LOW = 6200 //!< Battery indicator low [mV]
const ACCU_INDICATOR_HIGH = 7500 //!< Rechargeable battery indicator high [mV]
const ACCU_INDICATOR_LOW = 7100 //!< Rechargeable battery indicator low [mV]
function CNT_V(C: number) {
return ((C * ADC_REF) / (ADC_RES * 1000.0))
}
function updateBatteryInfo() {
let CinCnt = analogMM.getNumber(NumberFormat.Int16LE, AnalogOff.BatteryCurrent);
let CoutCnt = analogMM.getNumber(NumberFormat.Int16LE, AnalogOff.MotorCurrent);
let VinCnt = analogMM.getNumber(NumberFormat.Int16LE, AnalogOff.Cell123456);
if (!batteryInfo) {
batteryVMin = BATT_INDICATOR_LOW;
batteryVMax = BATT_INDICATOR_HIGH;
if (powerMM) {
const accu = powerMM.getNumber(NumberFormat.UInt8LE, 0);
if (accu > 0) {
control.dmesg("rechargeable battery")
batteryVMin = ACCU_INDICATOR_LOW;
batteryVMax = ACCU_INDICATOR_HIGH;
}
}
batteryInfo = {
CinCnt: CinCnt,
CoutCnt: CoutCnt,
VinCnt: VinCnt
};
// update in background
control.runInParallel(() => forever(updateBatteryInfo));
} else {
CinCnt = batteryInfo.CinCnt = ((batteryInfo.CinCnt * (AVR_CIN - 1)) + CinCnt) / AVR_CIN;
CoutCnt = batteryInfo.CoutCnt = ((batteryInfo.CoutCnt * (AVR_COUT - 1)) + CoutCnt) / AVR_COUT;
VinCnt = batteryInfo.VinCnt = ((batteryInfo.VinCnt * (AVR_VIN - 1)) + VinCnt) / AVR_VIN;
}
}
export interface BatteryInfo {
level: number;
Ibatt: number,
Vbatt: number,
Imotor: number
}
export function getBatteryInfo(): BatteryInfo {
init();
if (!batteryInfo) updateBatteryInfo();
const CinCnt = batteryInfo.CinCnt;
const CoutCnt = batteryInfo.CoutCnt;
const VinCnt = batteryInfo.VinCnt;
/*
void cUiUpdatePower(void)
{
#ifndef Linux_X86
DATAF CinV;
DATAF CoutV;
if ((UiInstance.Hw == FINAL) || (UiInstance.Hw == FINALB))
{
CinV = CNT_V(UiInstance.CinCnt) / AMP_CIN;
UiInstance.Vbatt = (CNT_V(UiInstance.VinCnt) / AMP_VIN) + CinV + VCE;
UiInstance.Ibatt = CinV / SHUNT_IN;
CoutV = CNT_V(UiInstance.CoutCnt) / AMP_COUT;
UiInstance.Imotor = CoutV / SHUNT_OUT;
}
else
{
CinV = CNT_V(UiInstance.CinCnt) / EP2_AMP_CIN;
UiInstance.Vbatt = (CNT_V(UiInstance.VinCnt) / AMP_VIN) + CinV + VCE;
UiInstance.Ibatt = CinV / EP2_SHUNT_IN;
UiInstance.Imotor = 0;
}
#endif
#ifdef DEBUG_TEMP_SHUTDOWN
UiInstance.Vbatt = 7.0;
UiInstance.Ibatt = 5.0;
#endif
}
*/
const CinV = CNT_V(CinCnt) / AMP_CIN;
const Vbatt = CNT_V(VinCnt) / AMP_VIN + CinV + VCE;
const Ibatt = CinV / SHUNT_IN;
const CoutV = CNT_V(CoutCnt) / AMP_COUT;
const Imotor = CoutV / SHUNT_OUT;
const level = Math.max(0, Math.min(100, Math.floor((Vbatt * 1000.0 - batteryVMin)
/ (batteryVMax - batteryVMin) * 100)));
return {
level: level,
Vbatt: Vbatt,
Ibatt: Ibatt,
Imotor: Imotor
};
}
function hashDevices(): number {
const conns = analogMM.slice(AnalogOff.InConn, DAL.NUM_INPUTS)
let r = 0;
for (let i = 0; i < conns.length; ++i) {
r = (r << 8 | conns[i]);
}
return r;
}
let nonActivated = 0;
function detectDevices() {
control.dmesg(`detect devices (${nonActivated} na)`)
const inDcm = analogMM.slice(AnalogOff.InDcm, DAL.NUM_INPUTS)
const inConn = analogMM.slice(AnalogOff.InConn, DAL.NUM_INPUTS)
let numChanged = 0;
const uartSensors: SensorInfo[] = [];
for (const sensorInfo of sensorInfos) {
const newConn = inConn[sensorInfo.port]
if (newConn == sensorInfo.connType) {
// control.dmesg(`connection unchanged ${newConn} at ${sensorInfo.port}`)
continue;
}
numChanged++
sensorInfo.connType = newConn
sensorInfo.devType = DAL.DEVICE_TYPE_NONE;
switch (newConn) {
case DAL.CONN_INPUT_UART: {
control.dmesg(`new UART connection at ${sensorInfo.port}`)
updateUartMode(sensorInfo.port, 0);
uartSensors.push(sensorInfo);
break;
}
case DAL.CONN_NXT_IIC: {
control.dmesg(`new NXT IIC connection at ${sensorInfo.port}`)
sensorInfo.devType = DAL.DEVICE_TYPE_IIC_UNKNOWN
sensorInfo.iicid = readIICID(sensorInfo.port)
control.dmesg(`IIC ID ${sensorInfo.iicid.length}`)
break;
} case DAL.CONN_NXT_DUMB: { // analog NXT sensor
control.dmesg(`new NXT analog connection at ${sensorInfo.port}`);
sensorInfo.devType = inDcm[sensorInfo.port];
control.dmesg(`NXT analog dev type ${sensorInfo.devType}`);
break;
}
case DAL.CONN_INPUT_DUMB: {
control.dmesg(`new DUMB connection at ${sensorInfo.port}`)
// TODO? for now assume touch
sensorInfo.devType = DAL.DEVICE_TYPE_TOUCH
break;
}
case DAL.CONN_NONE:
case 0: {
//control.dmesg(`disconnect at port ${sensorInfo.port}`)
break;
}
default: {
control.dmesg(`unknown connection type: ${newConn} at ${sensorInfo.port}`)
break;
}
}
}
if (uartSensors.length > 0) {
setUartModes();
for (const sensorInfo of uartSensors) {
let uinfo = readUartInfo(sensorInfo.port, 0)
sensorInfo.devType = uinfo[TypesOff.Type]
control.dmesg(`UART type ${sensorInfo.devType}`)
}
}
if (numChanged == 0 && nonActivated == 0)
return
//control.dmesg(`updating sensor status`)
nonActivated = 0;
for (const sensorInfo of sensorInfos) {
if (sensorInfo.devType == DAL.DEVICE_TYPE_IIC_UNKNOWN) {
sensorInfo.sensor = sensorInfo.sensors.filter(s => s._IICId() == sensorInfo.iicid)[0]
if (!sensorInfo.sensor) {
control.dmesg(`sensor not found for iicid=${sensorInfo.iicid} at ${sensorInfo.port}`)
nonActivated++;
} else {
control.dmesg(`sensor connected iicid=${sensorInfo.iicid} at ${sensorInfo.port}`)
sensorInfo.sensor._activated()
}
} else if (sensorInfo.devType != DAL.DEVICE_TYPE_NONE) {
sensorInfo.sensor = sensorInfo.sensors.filter(s => s._deviceType() == sensorInfo.devType)[0]
if (!sensorInfo.sensor) {
control.dmesg(`sensor not found for type=${sensorInfo.devType} at ${sensorInfo.port}`)
nonActivated++;
} else {
control.dmesg(`sensor connected type=${sensorInfo.devType} at ${sensorInfo.port}`)
sensorInfo.sensor._activated()
}
}
}
//control.dmesg(`detect devices done`)
}
export class Sensor extends control.Component {
protected _port: number // this is 0-based
constructor(port_: number) {
super()
if (!(1 <= port_ && port_ <= DAL.NUM_INPUTS))
control.panic(120)
this._port = port_ - 1
init()
sensorInfos[this._port].sensors.push(this)
this.markUsed();
}
poke() {
if (this.isActive())
sensorInfos[this._port].poke();
}
markUsed() {
sensors.__sensorUsed(this._port, this._deviceType());
}
_activated() { }
// 1-based
port() {
return this._port + 1
}
isActive() {
return sensorInfos[this._port].sensor == this
}
_query() {
return 0
}
_info(): string {
return this._query().toString();
}
_update(prev: number, curr: number) {
}
_deviceType() {
return 0
}
_IICId() {
return ''
}
}
export class AnalogSensor extends Sensor {
constructor(port: number) {
super(port)
}
_readPin6() {
if (!this.isActive()) return 0
return analogMM.getNumber(NumberFormat.Int16LE, AnalogOff.InPin6 + 2 * this._port)
}
}
export class UartSensor extends Sensor {
protected mode: number // the mode user asked for
protected realmode: number // the mode the hardware is in
constructor(port: number) {
super(port)
this.mode = 0
this.realmode = 0
}
_activated() {
this.realmode = 0
this._setMode(this.mode)
}
protected _setMode(m: number) {
//control.dmesg(`_setMode p=${this.port} m: ${this.realmode} -> ${m}`)
let v = m | 0
this.mode = v
if (!this.isActive()) return
if (this.realmode != this.mode) {
this.realmode = v
setUartMode(this._port, v)
}
}
getBytes(): Buffer {
return getUartBytes(this.isActive() ? this._port : -1)
}
getNumber(fmt: NumberFormat, off: number) {
if (!this.isActive())
return 0
return getUartNumber(fmt, off, this._port)
}
reset() {
if (this.isActive()) uartReset(this._port);
this.realmode = 0;
}
}
export class IICSensor extends Sensor {
protected mode: number // the mode user asked for
protected realmode: number // the mode the hardware is in
private readLength: number
constructor(port: number) {
super(port)
this.mode = 0
this.realmode = 0
this.readLength = 1;
}
_activated() {
this.realmode = 0
this._setMode(this.mode)
}
protected _setMode(m: number) {
let v = m | 0
this.mode = v
if (!this.isActive()) return
if (this.realmode != this.mode) {
this.realmode = v
setIICMode(this._port, this._deviceType(), v)
}
}
getBytes(): Buffer {
return getIICBytes(this.isActive() ? this._port : -1, this.readLength)
}
getNumber(fmt: NumberFormat, off: number) {
if (!this.isActive())
return 0
return getIICNumber(this.readLength, fmt, off, this._port)
}
transaction(deviceAddress: number, write: number[], read: number) {
this.readLength = read;
transactionIIC(this._port, deviceAddress, write, read)
}
_deviceType() {
return DAL.DEVICE_TYPE_IIC_UNKNOWN
}
}
export const iicsensor = new IICSensor(3)
function uartReset(port: number) {
if (port < 0) return
control.dmesg(`UART reset at ${port}`)
devcon.setNumber(NumberFormat.Int8LE, DevConOff.Connection + port, DAL.CONN_NONE)
devcon.setNumber(NumberFormat.Int8LE, DevConOff.Type + port, 0)
devcon.setNumber(NumberFormat.Int8LE, DevConOff.Mode + port, 0)
uartMM.ioctl(IO.UART_SET_CONN, devcon)
}
function getUartStatus(port: number) {
if (port < 0) return 0
return uartMM.getNumber(NumberFormat.Int8LE, UartOff.Status + port)
}
function waitNonZeroUartStatus(port: number) {
while (true) {
if (port < 0) return 0
let s = getUartStatus(port)
if (s) return s
pause(25)
}
}
function uartClearChange(port: number) {
control.dmesg(`UART clear change`);
const UART_DATA_READY = 8
const UART_PORT_CHANGED = 1
while (true) {
let status = getUartStatus(port)
if (port < 0) break
if ((status & UART_DATA_READY) != 0 && (status & UART_PORT_CHANGED) == 0)
break
devcon.setNumber(NumberFormat.Int8LE, DevConOff.Connection + port, DAL.CONN_INPUT_UART)
devcon.setNumber(NumberFormat.Int8LE, DevConOff.Type + port, 0)
devcon.setNumber(NumberFormat.Int8LE, DevConOff.Mode + port, 0)
uartMM.ioctl(IO.UART_CLEAR_CHANGED, devcon)
uartMM.setNumber(NumberFormat.Int8LE, UartOff.Status + port,
getUartStatus(port) & 0xfffe)
pause(10)
}
}
function setUartModes() {
control.dmesg(`UART set modes`)
uartMM.ioctl(IO.UART_SET_CONN, devcon)
const ports: number[] = [];
for (let port = 0; port < DAL.NUM_INPUTS; ++port) {
if (devcon.getNumber(NumberFormat.Int8LE, DevConOff.Connection + port) == DAL.CONN_INPUT_UART) {
ports.push(port);
}
}
while (ports.length) {
const port = ports.pop();
const status = waitNonZeroUartStatus(port)
control.dmesg(`UART status ${status} at ${port}`);
}
}
function updateUartMode(port: number, mode: number) {
control.dmesg(`UART update mode to ${mode} at ${port}`)
devcon.setNumber(NumberFormat.Int8LE, DevConOff.Connection + port, DAL.CONN_INPUT_UART)
devcon.setNumber(NumberFormat.Int8LE, DevConOff.Type + port, 33)
devcon.setNumber(NumberFormat.Int8LE, DevConOff.Mode + port, mode)
}
function setUartMode(port: number, mode: number) {
const UART_PORT_CHANGED = 1
while (true) {
if (port < 0) return
updateUartMode(port, mode);
uartMM.ioctl(IO.UART_SET_CONN, devcon)
let status = waitNonZeroUartStatus(port)
if (status & UART_PORT_CHANGED) {
control.dmesg(`UART clear changed at ${port}`)
uartClearChange(port)
} else {
control.dmesg(`UART status ${status} at ${port}`);
break;
}
pause(10)
}
}
function getUartBytes(port: number): Buffer {
if (port < 0) return output.createBuffer(DAL.MAX_DEVICE_DATALENGTH)
let index = uartMM.getNumber(NumberFormat.UInt16LE, UartOff.Actual + port * 2)
return uartMM.slice(
UartOff.Raw + DAL.MAX_DEVICE_DATALENGTH * 300 * port + DAL.MAX_DEVICE_DATALENGTH * index,
DAL.MAX_DEVICE_DATALENGTH)
}
function getUartNumber(fmt: NumberFormat, off: number, port: number) {
if (port < 0) return 0
let index = uartMM.getNumber(NumberFormat.UInt16LE, UartOff.Actual + port * 2)
return uartMM.getNumber(fmt,
UartOff.Raw + DAL.MAX_DEVICE_DATALENGTH * 300 * port + DAL.MAX_DEVICE_DATALENGTH * index + off)
}
export function setIICMode(port: number, type: number, mode: number) {
if (port < 0) return;
devcon.setNumber(NumberFormat.Int8LE, DevConOff.Connection + port, DAL.CONN_NXT_IIC)
devcon.setNumber(NumberFormat.Int8LE, DevConOff.Type + port, type)
devcon.setNumber(NumberFormat.Int8LE, DevConOff.Mode + port, mode)
IICMM.ioctl(IO.IIC_SET_CONN, devcon)
}
export function transactionIIC(port: number, deviceAddress: number, writeBuf: number[], readLen: number) {
if (port < 0) return;
let iicdata = output.createBuffer(IICDat.Size)
iicdata.setNumber(NumberFormat.Int8LE, IICDat.Port, port)
iicdata.setNumber(NumberFormat.Int8LE, IICDat.Repeat, 0)
iicdata.setNumber(NumberFormat.Int16LE, IICDat.Time, 0)
iicdata.setNumber(NumberFormat.Int8LE, IICDat.WrLng, writeBuf.length + 1)
for (let i = 0; i < writeBuf.length; i++)
iicdata.setNumber(NumberFormat.Int8LE, IICDat.WrData + i + 1, writeBuf[i])
iicdata.setNumber(NumberFormat.Int8LE, IICDat.WrData, deviceAddress)
iicdata.setNumber(NumberFormat.Int8LE, IICDat.RdLng, readLen)
IICMM.ioctl(IO.IIC_SETUP, iicdata)
}
export function getIICBytes(port: number, length: number) {
if (port < 0) return output.createBuffer(length);
let index = IICMM.getNumber(NumberFormat.UInt16LE, IICOff.Actual + port * 2);
let buf = IICMM.slice(
IICOff.Raw + DAL.MAX_DEVICE_DATALENGTH * 300 * port + DAL.MAX_DEVICE_DATALENGTH * index,
length
);
// Reverse
for (let i = 0; i < length / 2; i++) {
let c = buf[i]
buf[i] = buf[length - i - 1]
buf[length - i - 1] = c
}
return buf;
}
export function getIICNumber(length: number, format: NumberFormat, off: number, port: number) {
return getIICBytes(port, length).getNumber(format, off)
}
const enum NxtColOff {
Calibration = 0, // uint32[4][3]
CalLimits = 48, // uint16[2]
Crc = 52, // uint16
ADRaw = 54, // uint16[4]
SensorRaw = 62, // uint16[4]
Padding = 70,
Size = 72
}
const enum AnalogOff {
InPin1 = 0, // int16[4]
InPin6 = 8, // int16[4]
OutPin5 = 16, // int16[4]
BatteryTemp = 24, // int16
MotorCurrent = 26, // int16
BatteryCurrent = 28, // int16
Cell123456 = 30, // int16
Pin1 = 32, // int16[300][4]
Pin6 = 2432, // int16[300][4]
Actual = 4832, // uint16[4]
LogIn = 4840, // uint16[4]
LogOut = 4848, // uint16[4]
NxtCol = 4856, // uint16[36][4] - NxtColor*4
OutPin5Low = 5144, // int16[4]
Updated = 5152, // int8[4]
InDcm = 5156, // int8[4]
InConn = 5160, // int8[4]
OutDcm = 5164, // int8[4]
OutConn = 5168, // int8[4]
Size = 5172
}
const enum DevConOff {
Connection = 0, // int8[4]
Type = 4, // int8[4]
Mode = 8, // int8[4]
Size = 12
}
const enum TypesOff {
Name = 0, // int8[12]
Type = 12, // int8
Connection = 13, // int8
Mode = 14, // int8
DataSets = 15, // int8
Format = 16, // int8
Figures = 17, // int8
Decimals = 18, // int8
Views = 19, // int8
RawMin = 20, // float32
RawMax = 24, // float32
PctMin = 28, // float32
PctMax = 32, // float32
SiMin = 36, // float32
SiMax = 40, // float32
InvalidTime = 44, // uint16
IdValue = 46, // uint16
Pins = 48, // int8
Symbol = 49, // int8[5]
Align = 54, // uint16
Size = 56
}
const enum UartOff {
TypeData = 0, // Types[8][4]
Repeat = 1792, // uint16[300][4]
Raw = 4192, // int8[32][300][4]
Actual = 42592, // uint16[4]
LogIn = 42600, // uint16[4]
Status = 42608, // int8[4]
Output = 42612, // int8[32][4]
OutputLength = 42740, // int8[4]
Size = 42744
}
const enum UartCtlOff {
TypeData = 0, // Types
Port = 56, // int8
Mode = 57, // int8
Size = 58
}
const enum IICOff {
TypeData = 0, // Types[8][4]
Repeat = 1792, // uint16[300][4]
Raw = 4192, // int8[32][300][4]
Actual = 42592, // uint16[4]
LogIn = 42600, // uint16[4]
Status = 42608, // int8[4]
Output = 42612, // int8[32][4]
OutputLength = 42740, // int8[4]
Size = 42744
}
const enum IICCtlOff {
TypeData = 0, // Types
Port = 56, // int8
Mode = 57, // int8
Size = 58
}
const enum IICDat {
Result = 0, // result
Port = 4, // int8
Repeat = 5, // int8
Time = 6, // int16
WrLng = 8, // int8
WrData = 9, // int8[32]
RdLng = 41, // int8
RdData = 42, //int8[32]
Size = 74,
}
const enum IICStr {
Port = 0, // int8
Time = 2, // int16
Type = 4, // int8
Mode = 5, // int8
Manufacturer = 6, // int8[9]
SensorType = 15, // int[9]
SetupLng = 24, // int8
SetupString = 28, // ulong
PollLng = 32, // int8
PollString = 36, // ulong
ReadLng = 40, // int8
Size = 44
}
const enum IO {
UART_SET_CONN = 0xc00c7500,
UART_READ_MODE_INFO = 0xc03c7501,
UART_NACK_MODE_INFO = 0xc03c7502,
UART_CLEAR_CHANGED = 0xc03c7503,
IIC_SET_CONN = 0xc00c6902,
IIC_READ_TYPE_INFO = 0xc03c6903,
IIC_SETUP = 0xc04c6905,
IIC_SET = 0xc02c6906,
TST_PIN_ON = 0xc00b7401,
TST_PIN_OFF = 0xc00b7402,
TST_PIN_READ = 0xc00b7403,
TST_PIN_WRITE = 0xc00b7404,
TST_UART_ON = 0xc0487405,
TST_UART_OFF = 0xc0487406,
TST_UART_EN = 0xc0487407,
TST_UART_DIS = 0xc0487408,
TST_UART_READ = 0xc0487409,
TST_UART_WRITE = 0xc048740a,
}
}
namespace sensors {
export enum ThresholdState {
Normal = 1,
High = 2,
Low = 3,
}
export class ThresholdDetector {
public id: number;
private min: number;
private max: number;
private lowThreshold: number;
private highThreshold: number;
public level: number;
public state: ThresholdState;
constructor(id: number, min = 0, max = 100, lowThreshold = 20, highThreshold = 80) {
this.id = id;
this.min = min;
this.max = max;
this.lowThreshold = lowThreshold;
this.highThreshold = highThreshold;
this.level = Math.ceil((max - min) / 2);
this.state = ThresholdState.Normal;
}
public setLevel(level: number) {
if (this == null) return
this.level = this.clampValue(level);
if (this.level >= this.highThreshold) {
this.setState(ThresholdState.High);
}
else if (this.level <= this.lowThreshold) {
this.setState(ThresholdState.Low);
}
else {
const interval = (this.highThreshold - this.lowThreshold) / 6;
if ((this.state == ThresholdState.High && this.level < this.highThreshold - interval) ||
(this.state == ThresholdState.Low && this.level > this.lowThreshold + interval))
this.setState(ThresholdState.Normal);
}
}
public threshold(t: ThresholdState): number {
switch (t) {
case ThresholdState.High: return this.highThreshold;
case ThresholdState.Low: return this.lowThreshold;
default: return (this.max - this.min) / 2;
}
}
public setLowThreshold(value: number) {
this.lowThreshold = this.clampValue(value);
this.highThreshold = Math.max(this.lowThreshold + 1, this.highThreshold);
}
public setHighThreshold(value: number) {
this.highThreshold = this.clampValue(value);
this.lowThreshold = Math.min(this.highThreshold - 1, this.lowThreshold);
}
private clampValue(value: number) {
if (value < this.min) {
return this.min;
}
else if (value > this.max) {
return this.max;
}
return value;
}
private setState(state: ThresholdState) {
if (this.state == state) return;
this.state = state;
switch (state) {
case ThresholdState.High:
control.raiseEvent(this.id, ThresholdState.High);
break;
case ThresholdState.Low:
control.raiseEvent(this.id, ThresholdState.Low);
break;
}
}
}
}