918af4f3ac
* change simulator svg * change radio image * Remove google fonts cdn * change color of 'advanced' button * font fix * font fix 2 * display fix * change fullsceen simulator bg * Continuous servo * handle continuous state * adding shims * update rendering for continuous servos * fixing sim * fix sig * typo * fix sim * bump pxt * bump pxt * rerun travis * Input blocks revision - add Button and Pin event types - merge onPinPressed & onPinReleased in new onPinEvent function - create new onButtonEvent function * update input blocks in docs and tests * remove device_pin_release block * Hide DAL.x behind Enum * bring back deprecated blocks, but hide them * shims and locales files * fix input.input. typing * remove buildpr * bump V3 * update simulator aspect ratio * add Loudness Block * revoke loudness block * Adds soundLevel To be replaced by pxt-common-packages when DAL is updated. * Remove P0 & P3 from AnalogPin Co-authored-by: Juri <gitkraken@juriwolf.de>
208 lines
4.4 KiB
Markdown
208 lines
4.4 KiB
Markdown
# Boolean elements
|
|
|
|
Whether creating equations in Boolean algebra or using them in your programs, you'll form both simple and complex logical expressions that use basic operations to combine the logical conditions.
|
|
|
|
## Notation
|
|
|
|
Boolean (logical) equations are expressed in a way similar to mathmatical equations. Variables in Boolean expressions though, have only two possible values, ``true`` or ``false``. For an equation using a logical expression, the equivalant sides of the equal sign ,``=``, will be only ``true`` or ``false`` too.
|
|
|
|
The following list shows the basic notation elements for Boolean expressions.
|
|
|
|
* ``~A``: the inverse (**NOT**) of ``A``, when ``A`` is ``true``, ``~A`` is ``false``
|
|
* ``A + B``: the value of ``A`` **OR** ``B``
|
|
* ``A · B``: the value of ``A`` **AND** ``B``
|
|
* ``A ⊕ B``: the value of the exclusive OR (**XOR**) of ``A`` with ``B``
|
|
* ``Q``: equivalent result (OUTPUT) value of a logical expression
|
|
|
|
A resulting value, ``Q``, from a logical expression in is shown like:
|
|
|
|
``Q`` = ``A + B``
|
|
|
|
An equation to show logically equivalent expressions (where both sides have the same resulting value) can look like this:
|
|
|
|
``~(A + B)`` = ``~A · ~B``
|
|
|
|
## Logical operators
|
|
|
|
All Boolean expressions result from a combination of conditions and operators. These operators join individual conditons together and evaluate into a single ``true`` or ``false`` condition. The following are the basic logical operators. Their use in both Boolean algebra and in code is shown along with their truth table.
|
|
|
|
### Identity
|
|
|
|
Identity means that a result value is the same as the condition itself.
|
|
|
|
``Q = A``
|
|
|
|
```block
|
|
let A = false
|
|
let Q = A
|
|
```
|
|
|
|
#### Example - Blink LEDs on press
|
|
|
|
```blocks
|
|
let A = false
|
|
basic.forever(function () {
|
|
A = input.buttonIsPressed(Button.A)
|
|
if (A) {
|
|
basic.showIcon(IconNames.Chessboard)
|
|
} else {
|
|
basic.clearScreen()
|
|
}
|
|
basic.pause(100)
|
|
})
|
|
```
|
|
|
|
#### Truth table
|
|
|
|
A | A
|
|
-|-
|
|
F | F
|
|
T | T
|
|
|
|
### NOT (Negation)
|
|
|
|
The NOT operator is called negation or the inverse. It takes a single logical value and makes it have the opposite value, ``true`` goes to ``false`` and ``false`` goes to ``true``.
|
|
|
|
``Q = ~A``
|
|
|
|
```block
|
|
let A = false
|
|
let Q = !(A)
|
|
```
|
|
|
|
#### Example - Blink LEDs on not pressed
|
|
|
|
```blocks
|
|
let A = false
|
|
basic.forever(function () {
|
|
A = input.buttonIsPressed(Button.A)
|
|
if (!(A)) {
|
|
basic.showIcon(IconNames.Chessboard)
|
|
} else {
|
|
basic.clearScreen()
|
|
}
|
|
basic.pause(100)
|
|
})
|
|
```
|
|
|
|
#### Truth table
|
|
|
|
A | ~A
|
|
-|-
|
|
F | T
|
|
T | F
|
|
|
|
### OR (Disjunction)
|
|
|
|
The OR operator results in ``true`` when one or more conditions are ``true``.
|
|
|
|
``Q = A + B``
|
|
|
|
```block
|
|
let A = false
|
|
let B = false
|
|
let Q = A || B
|
|
```
|
|
|
|
#### Example - Blink on any press
|
|
|
|
```blocks
|
|
let A = false
|
|
let B = false
|
|
basic.forever(function () {
|
|
A = input.buttonIsPressed(Button.A)
|
|
B = input.buttonIsPressed(Button.B)
|
|
if (A || B) {
|
|
basic.showIcon(IconNames.Chessboard)
|
|
} else {
|
|
basic.clearScreen()
|
|
}
|
|
basic.pause(100)
|
|
})
|
|
```
|
|
|
|
#### Truth table
|
|
|
|
A | B | A + B
|
|
-|-|-
|
|
F | F | F
|
|
T | F | T
|
|
F | T | T
|
|
T | T | T
|
|
|
|
### AND (Conjunction)
|
|
|
|
The AND operator requires that all conditions are ``true`` for the result to be ``true``.
|
|
|
|
``Q = A · B``
|
|
|
|
```block
|
|
let A = false
|
|
let B = false
|
|
let Q = A && B
|
|
```
|
|
|
|
#### Example - Blink on double press only
|
|
|
|
```blocks
|
|
let A = false
|
|
let B = false
|
|
basic.forever(function () {
|
|
A = input.buttonIsPressed(Button.A)
|
|
B = input.buttonIsPressed(Button.B)
|
|
if (A && B) {
|
|
basic.showIcon(IconNames.Chessboard)
|
|
} else {
|
|
basic.clearScreen()
|
|
}
|
|
basic.pause(100)
|
|
})
|
|
```
|
|
|
|
#### Truth table
|
|
|
|
A | B | A · B
|
|
-|-|-
|
|
F | F | F
|
|
T | F | F
|
|
F | T | F
|
|
T | T | T
|
|
|
|
### XOR (Exclusive OR) #xor
|
|
|
|
Exclusive OR (XOR) means that only one or the other condition is true. Both conditions can't be true at the same time. XOR is common in Boolean algebra but it has no operator in JavaScript. Its operation can be made from combining a few simple expressions.
|
|
|
|
``Q = A ⊕ B``
|
|
|
|
```block
|
|
let A = false
|
|
let B = false
|
|
let Q = (A || B) && !(A && B)
|
|
```
|
|
|
|
#### Example - Blink on one press or the other
|
|
|
|
```blocks
|
|
let A = false
|
|
let B = false
|
|
basic.forever(function () {
|
|
A = input.buttonIsPressed(Button.A)
|
|
B = input.buttonIsPressed(Button.B)
|
|
if ((A || B) && !(A && B)) {
|
|
basic.showIcon(IconNames.Chessboard)
|
|
} else {
|
|
basic.clearScreen()
|
|
}
|
|
basic.pause(100)
|
|
})
|
|
```
|
|
|
|
#### Truth table
|
|
|
|
A | B | A ⊕ B
|
|
-|-|-
|
|
F | F | F
|
|
T | F | T
|
|
F | T | T
|
|
T | T | F
|