pxt-calliope/docs/device/serial.md
Amerlander 918af4f3ac
Bump V3.0.22 ()
* change simulator svg

* change radio image

* Remove google fonts cdn

* change color of 'advanced' button

* font fix

* font fix 2

* display fix

* change fullsceen simulator bg

* Continuous servo

* handle continuous state

* adding shims

* update rendering for continuous servos

* fixing sim

* fix sig

* typo

* fix sim

* bump pxt

* bump pxt

* rerun travis

* Input blocks revision

- add Button and Pin event types
- merge onPinPressed & onPinReleased in new onPinEvent function
- create new onButtonEvent function

* update input blocks in docs and tests

* remove device_pin_release block

* Hide DAL.x behind Enum

* bring back deprecated blocks, but hide them

* shims and locales files

* fix input.input. typing

* remove buildpr

* bump V3

* update simulator aspect ratio

* add Loudness Block

* revoke loudness block

* Adds soundLevel

To be replaced by pxt-common-packages when DAL is updated.

* Remove P0 & P3 from AnalogPin

Co-authored-by: Juri <gitkraken@juriwolf.de>
2020-09-08 02:04:25 -07:00

82 lines
4.2 KiB
Markdown

# Serial
The [serial](/reference/serial) supports [serial communication](https://en.wikipedia.org/wiki/Serial_port) between the BBC micro:bit and another computer. Basically, this allows you to send data from the micro:bit to your own computer. This is very useful for debugging purposes: you can add `write line` statements in your code and see them display on your computer as the program executes.
The code below shows a simple script that sends a line when the BBC micro:bit starts and another line each time the button ``A`` is pressed.
```blocks
serial.writeLine("started...")
input.onButtonPressed(Button.A, () => {
serial.writeLine("A pressed")
})
```
Data is also automatically streamed to serial by the ** bar graph** block
and picked up by the editor. This data can be streamed to the cloud as well.
```blocks
basic.forever(() => {
led.plotBarGraph(input.acceleration(Dimension.X), 0);
});
```
## How to read the micro:bit's serial output from your computer
Unfortunately, using the serial library requires quite a bit of a setup.
### ~ hint
**Windows earlier than 10**
If you are running a Windows version earlier than 10, you must [install a device driver](https://os.mbed.com/docs/latest/tutorials/windows-serial-driver.html) (for the computer to recognize the serial interface of the micro:bit).
## ~
Also, if you don't see the serial port as one of your computer's devices, you might need to [update the firmware](/device/firmware) on the @boardname@. Find the device name for the attached serial port in the following instructions for your operating system.
### Windows > Tera Term
* Install the terminal emulator [Tera Term](https://ttssh2.osdn.jp/index.html.en). At the time of this writing, the latest version is 4.88 and can be downloaded [from here](http://en.osdn.jp/frs/redir.php?m=jaist&f=%2Fttssh2%2F63767%2Fteraterm-4.88.exe). Follow the instructions from the installer.
Once both the driver and the terminal emulator are installed, plug in the micro:bit and wait until the device is fully setup. Then, open TeraTerm.
* Hit `File` > `New Connection`
* Check "Serial"; in the dropdown menu, pick the COM port that says "mbed Serial Port". Hit `Ok`.
* In the menus, hit `Setup` > `Serial Port` and set the baud rate to `115200`.
You should be good. Feel free to hit `Setup` > `Save Setup` in the menus to erase the default configuration file with a new one so that you don't have to type in the settings again.
Please note that Windows will assign you a different COM port if you plug in another micro:bit. If you're juggling between micro:bits, you'll have to change the COM port every time.
### Windows > Putty
If you prefer another terminal emulator (such as [PuTTY](http://www.putty.org/)), here are some instructions.
* Open Windows's [Device Manager](https://windows.microsoft.com/en-us/windows/open-device-manager); expand the section called "Ports (COM & LPT)"; write down the com number for "mbed Serial Port" (e.g. COM14)
* Open PuTTY; on the main screen, use the following settings: Serial / COM14 / 115200. Replace COM14 with the COM port number you wrote down previously. Feel free to type in a name and hit "Save" to remember this configuration.
![](/static/mb/serial-library-0.png)
* (optional): in the "Terminal" section, check "implicit cr in every lf"
![](/static/mb/serial-library-1.png)
## Linux
* Install the program `screen` if it is not already installed.
* Plug in the micro:bit.
* Open a terminal.
* Find which device node the micro:bit was assigned to with the command `ls /dev/ttyACM*`.
* If it was `/dev/ttyACM0`, type the command `screen /dev/ttyACM0 115200`. If it was some other device node,
use that one in the command instead. **Note:** You may need root access to run `screen`
successfully. You can probably use the command `sudo` like this: `sudo screen /dev/ttyACM0 115200`.
* To exit `screen`, type `Ctrl-A` `Ctrl-D`.
Alternative programs include `minicom` and so on.
## Mac OS
* Plug in the micro:bit
* Open a terminal
* `ls /dev/cu.*` will return to you a list of serial devices; one of them will look like `/dev/cu.usbmodem1422` (the exact number depends on your computer)
* `screen /dev/cu.usbmodem1422 115200` will open up the micro:bit's serial output. To exit, hit `Ctrl-A` `Ctrl-D`.