pxt-ev3/sim/state/uart.ts
Dmitriy Antipov 333b487bb6 final-changes
2023-05-13 22:53:44 +03:00

157 lines
6.1 KiB
TypeScript

namespace pxsim {
enum UartOff {
TypeData = 0, // Types[8][4]
Repeat = 1792, // uint16[300][4]
Raw = 4192, // int8[32][300][4]
Actual = 42592, // uint16[4]
LogIn = 42600, // uint16[4]
Status = 42608, // int8[4]
Output = 42612, // int8[32][4]
OutputLength = 42740, // int8[4]
Size = 42744
}
enum UartStatus {
UART_PORT_CHANGED = 1,
UART_DATA_READY = 8
}
enum IO {
UART_SET_CONN = 0xc00c7500,
UART_READ_MODE_INFO = 0xc03c7501,
UART_NACK_MODE_INFO = 0xc03c7502,
UART_CLEAR_CHANGED = 0xc03c7503,
IIC_SET_CONN = 0xc00c6902,
IIC_READ_TYPE_INFO = 0xc03c6903,
IIC_SETUP = 0xc04c6905,
IIC_SET = 0xc02c6906,
TST_PIN_ON = 0xc00b7401,
TST_PIN_OFF = 0xc00b7402,
TST_PIN_READ = 0xc00b7403,
TST_PIN_WRITE = 0xc00b7404,
TST_UART_ON = 0xc0487405,
TST_UART_OFF = 0xc0487406,
TST_UART_EN = 0xc0487407,
TST_UART_DIS = 0xc0487408,
TST_UART_READ = 0xc0487409,
TST_UART_WRITE = 0xc048740a,
}
enum DevConOff {
Connection = 0, // int8[4]
Type = 4, // int8[4]
Mode = 8, // int8[4]
Size = 12
}
enum UartCtlOff {
TypeData = 0, // Types
Port = 56, // int8
Mode = 57, // int8
Size = 58
}
enum TypesOff {
Name = 0, // int8[12]
Type = 12, // int8
Connection = 13, // int8
Mode = 14, // int8
DataSets = 15, // int8
Format = 16, // int8
Figures = 17, // int8
Decimals = 18, // int8
Views = 19, // int8
RawMin = 20, // float32
RawMax = 24, // float32
PctMin = 28, // float32
PctMax = 32, // float32
SiMin = 36, // float32
SiMax = 40, // float32
InvalidTime = 44, // uint16
IdValue = 46, // uint16
Pins = 48, // int8
Symbol = 49, // int8[5]
Align = 54, // uint16
Size = 56
}
export class EV3UArtState {
constructor() {
let data = new Uint8Array(UartOff.Size);
MMapMethods.register("/dev/lms_uart", {
data,
beforeMemRead: () => {
//console.log("uart before read");
const inputNodes = ev3board().getInputNodes();
for (let port = 0; port < DAL.NUM_INPUTS; port++) {
const node = inputNodes[port];
if (node && node.isUart()) {
// Actual
const index = 0; //UartOff.Actual + port * 2;
if (!node.isModeReturnArr()) {
const value = Math.floor(node.getValue());
util.map16Bit(data, UartOff.Raw + DAL.MAX_DEVICE_DATALENGTH * 300 * port + DAL.MAX_DEVICE_DATALENGTH * index, value);
} else {
const values = node.getValues();
for (let i = 0, offset = 0; i < values.length; i++, offset += 2) {
util.map16Bit(data, UartOff.Raw + DAL.MAX_DEVICE_DATALENGTH * 300 * port + DAL.MAX_DEVICE_DATALENGTH * index + offset, Math.floor(values[i]));
}
}
// Status
data[UartOff.Status + port] = node.valueChange() ? UartStatus.UART_PORT_CHANGED : UartStatus.UART_DATA_READY;
}
}
},
read: buf => {
let v = "vSIM"
// for (let i = 0; i < buf.data.length; ++i)
// buf.data[i] = v.charCodeAt(i) || 0
return buf.data.length
},
write: buf => {
return 2
},
ioctl: (id, buf) => {
switch (id) {
case IO.UART_SET_CONN: {
// Set mode
//console.log("IO.UART_SET_CONN");
for (let port = 0; port < DAL.NUM_INPUTS; port++) {
const connection = buf.data[DevConOff.Connection + port]; // CONN_NONE, CONN_INPUT_UART
const type = buf.data[DevConOff.Type + port];
const mode = buf.data[DevConOff.Mode + port];
//console.log(`${port}, mode: ${mode}`)
const node = ev3board().getInputNodes()[port];
if (node) node.setMode(mode);
}
return 2;
}
case IO.UART_CLEAR_CHANGED: {
//console.log("IO.UART_CLEAR_CHANGED")
for (let port = 0; port < DAL.NUM_INPUTS; port++) {
const connection = buf.data[DevConOff.Connection + port]; // CONN_NONE, CONN_INPUT_UART
const type = buf.data[DevConOff.Type + port];
const mode = buf.data[DevConOff.Mode + port];
const node = ev3board().getInputNodes()[port];
if (node) node.setMode(mode);
}
return 2;
}
case IO.UART_READ_MODE_INFO: {
//console.log("IO.UART_READ_MODE_INFO")
const port = buf.data[UartCtlOff.Port];
const mode = buf.data[UartCtlOff.Mode];
const node = ev3board().getInputNodes()[port];
if (node) buf.data[UartCtlOff.TypeData + TypesOff.Type] = node.getDeviceType(); // DEVICE_TYPE_NONE, DEVICE_TYPE_TOUCH,
return 2;
}
}
return 2;
}
})
}
}
}