pxt-ev3/libs/core/output.ts
2017-12-06 22:41:51 -08:00

321 lines
9.5 KiB
TypeScript

enum Output {
//% block="A"
A = 0x01,
//% block="B"
B = 0x02,
//% block="C"
C = 0x04,
//% block="D"
D = 0x08,
//% block="All"
ALL = 0x0f
}
enum OutputType {
None = 0,
Tacho = 7,
MiniTacho = 8,
}
namespace motors {
let pwmMM: MMap
let motorMM: MMap
const enum MotorDataOff {
TachoCounts = 0, // int32
Speed = 4, // int8
Padding = 5, // int8[3]
TachoSensor = 8, // int32
Size = 12
}
function init() {
if (pwmMM) return
pwmMM = control.mmap("/dev/lms_pwm", 0, 0)
if (!pwmMM) control.fail("no PWM file")
motorMM = control.mmap("/dev/lms_motor", MotorDataOff.Size * DAL.NUM_OUTPUTS, 0)
resetMotors()
let buf = output.createBuffer(1)
buf[0] = DAL.opProgramStart
writePWM(buf)
}
function writePWM(buf: Buffer): void {
init()
pwmMM.write(buf)
}
function readPWM(buf: Buffer): void {
init()
pwmMM.read(buf);
}
function mkCmd(out: Output, cmd: number, addSize: number) {
const b = output.createBuffer(2 + addSize)
b.setNumber(NumberFormat.UInt8LE, 0, cmd)
b.setNumber(NumberFormat.UInt8LE, 1, out)
return b
}
function resetMotors() {
reset(Output.ALL)
}
/**
* Stops all motors
*/
//% blockId=motorStopAll block="stop all `icons.motorLarge`"
//% weight=10 group="Motors" blockGap=8
export function stopAllMotors() {
const b = mkCmd(Output.ALL, DAL.opOutputStop, 0)
writePWM(b)
}
//% fixedInstances
export class Motor extends control.Component {
private port: Output;
private large: boolean;
private brake: boolean;
constructor(port: Output, large: boolean) {
super();
this.port = port;
this.large = large;
this.brake = false;
}
/**
* Sets the motor speed level from ``-100`` to ``100``.
* @param motor the output connection that the motor is connected to
* @param speed the power from ``100`` full forward to ``-100`` full backward, eg: 50
*/
//% blockId=motorSetSpeed block="set speed `icons.motorLarge` %motor|to %speed|%"
//% weight=99 group="Motors" blockGap=8
//% power.min=-100 power.max=100
setSpeed(speed: number) {
speed = Math.clamp(-100, 100, speed >> 0);
// per LEGO: call it power, use speed
const b = mkCmd(this.port, DAL.opOutputSpeed, 1)
b.setNumber(NumberFormat.Int8LE, 2, speed)
writePWM(b)
if (speed) {
const b = mkCmd(this.port, DAL.opOutputStart, 0)
writePWM(b);
} else {
this.stop();
}
}
/**
* Moves the motor by a number of degrees
* @param degrees the angle to turn the motor
* @param angle the degrees to rotate, eg: 360
* @param power the power from ``100`` full forward to ``-100`` full backward, eg: 50
*/
//% blockId=motorMove block="move `icons.motorLarge` %motor|by %angle|degrees at %power|%"
//% weight=98 group="Motors" blockGap=8
//% power.min=-100 power.max=100
move(angle: number, power: number) {
angle = angle >> 0;
power = Math.clamp(-100, 100, power >> 0);
step(this.port, {
speed: power,
step1: 0,
step2: angle,
step3: 0,
useSteps: true,
useBrake: this.brake
})
}
/**
* Stops the motor
*/
//% blockId=motorStop block="stop `icons.motorLarge` %motor"
//% weight=97 group="Motors"
stop() {
const b = mkCmd(this.port, DAL.opOutputStop, 1)
b.setNumber(NumberFormat.UInt8LE, 2, this.brake ? 1 : 0)
writePWM(b);
}
/**
* Sets the automatic brake on or off when the motor is off
* @param brake a value indicating if the motor should break when off
*/
//% blockId=outputMotorSetBrakeMode block="set `icons.motorLarge` %motor|brake %brake"
//% brake.fieldEditor=toggleonoff
//% weight=60 group="Motors" blockGap=8
setBrake(brake: boolean) {
this.brake = brake;
}
/**
* Reverses the motor polarity
*/
//% blockId=motorSetReversed block="set `icons.motorLarge` %motor|reversed %reversed"
//% reversed.fieldEditor=toggleonoff
//% weight=59 group="Motors"
setReversed(reversed: boolean) {
const b = mkCmd(this.port, DAL.opOutputPolarity, 1)
b.setNumber(NumberFormat.Int8LE, 2, reversed ? -1 : 1);
writePWM(b)
}
/**
* Gets motor actual speed.
* @param motor the port which connects to the motor
*/
//% blockId=motorSpeed block="`icons.motorLarge` %motor|speed"
//% weight=72 group="Motors" blockGap=8
speed(): number {
return getMotorData(this.port).actualSpeed;
}
/**
* Gets motor step count.
* @param motor the port which connects to the motor
*/
//% blockId=motorCount block="`icons.motorLarge` %motor|count"
//% weight=71 group="Motors" blockGap=8
count(): number {
return getMotorData(this.port).count;
}
/**
* Gets motor tacho count.
* @param motor the port which connects to the motor
*/
//% blockId=motorTachoCount block="`icons.motorLarge` %motor|tacho count"
//% weight=70 group="Motors"
tachoCount(): number {
return getMotorData(this.port).tachoCount;
}
/**
* Clears the motor count
*/
clearCount() {
const b = mkCmd(this.port, DAL.opOutputClearCount, 0)
writePWM(b)
for (let i = 0; i < DAL.NUM_OUTPUTS; ++i) {
if (this.port & (1 << i)) {
motorMM.setNumber(NumberFormat.Int32LE, i * MotorDataOff.Size + MotorDataOff.TachoSensor, 0)
}
}
}
/**
* Resets the motor.
*/
reset() {
reset(this.port);
}
}
//% whenUsed fixedInstance block="large A"
export const largeMotorA = new Motor(Output.A, true);
//% whenUsed fixedInstance block="large B"
export const largeMotorB = new Motor(Output.B, true);
//% whenUsed fixedInstance block="large C"
export const largeMotorC = new Motor(Output.C, true);
//% whenUsed fixedInstance block="large D"
export const largeMotorD = new Motor(Output.D, true);
//% whenUsed fixedInstance block="medium A"
export const mediumMotorA = new Motor(Output.A, false);
//% whenUsed fixedInstance block="medium B"
export const mediumMotorB = new Motor(Output.B, false);
//% whenUsed fixedInstance block="medium C"
export const mediumMotorC = new Motor(Output.C, false);
//% whenUsed fixedInstance block="medium D"
export const mediumMotorD = new Motor(Output.D, false);
function reset(out: Output) {
let b = mkCmd(out, DAL.opOutputReset, 0)
writePWM(b)
}
function outOffset(out: Output) {
for (let i = 0; i < DAL.NUM_OUTPUTS; ++i) {
if (out & (1 << i))
return i * MotorDataOff.Size
}
return 0
}
interface MotorData {
actualSpeed: number; // -100..+100
tachoCount: number;
count: number;
}
// only a single output at a time
function getMotorData(out: Output): MotorData {
let buf = motorMM.slice(outOffset(out), MotorDataOff.Size)
return {
actualSpeed: buf.getNumber(NumberFormat.Int8LE, MotorDataOff.Speed),
tachoCount: buf.getNumber(NumberFormat.Int32LE, MotorDataOff.TachoCounts),
count: buf.getNumber(NumberFormat.Int32LE, MotorDataOff.TachoSensor),
}
}
interface StepOptions {
power?: number;
speed?: number; // either speed or power has to be present
step1: number;
step2: number;
step3: number;
useSteps?: boolean; // otherwise use milliseconds
useBrake?: boolean;
}
function step(out: Output, opts: StepOptions) {
let op = opts.useSteps ? DAL.opOutputStepSpeed : DAL.opOutputTimeSpeed
let speed = opts.speed
if (speed == null) {
speed = opts.power
op = opts.useSteps ? DAL.opOutputStepPower : DAL.opOutputTimePower
if (speed == null)
return
}
speed = Math.clamp(-100, 100, speed)
let b = mkCmd(out, op, 15)
b.setNumber(NumberFormat.Int8LE, 2, speed)
// note that b[3] is padding
b.setNumber(NumberFormat.Int32LE, 4 + 4 * 0, opts.step1)
b.setNumber(NumberFormat.Int32LE, 4 + 4 * 1, opts.step2)
b.setNumber(NumberFormat.Int32LE, 4 + 4 * 2, opts.step3)
b.setNumber(NumberFormat.Int8LE, 4 + 4 * 3, opts.useBrake ? 1 : 0)
writePWM(b)
}
const types = [0, 0, 0, 0]
export function setType(out: Output, type: OutputType) {
let b = mkCmd(out, DAL.opOutputSetType, 3)
for (let i = 0; i < 4; ++i) {
if (out & (1 << i)) {
types[i] = type
}
b.setNumber(NumberFormat.UInt8LE, i + 1, types[i])
}
writePWM(b)
}
}
interface Buffer {
[index: number]: number;
// rest defined in buffer.cpp
}