pxt-ev3/libs/core/output.ts
2017-12-18 13:04:17 -08:00

584 lines
18 KiB
TypeScript

enum Output {
//% block="A"
A = 0x01,
//% block="B"
B = 0x02,
//% block="C"
C = 0x04,
//% block="D"
D = 0x08,
//% block="B+C"
BC = Output.B | Output.C,
//% block="A+B"
AB = Output.A | Output.B,
//% block="C+D"
CD = Output.C | Output.D,
//% block="A+D"
AD = Output.B | Output.C,
//% block="All"
ALL = 0x0f
}
enum OutputType {
None = 0,
Tacho = 7,
MiniTacho = 8,
}
enum MoveUnit {
//% block="rotations"
Rotations,
//% block="degrees"
Degrees,
//% block="seconds"
Seconds
}
namespace motors {
let pwmMM: MMap
let motorMM: MMap
const enum MotorDataOff {
TachoCounts = 0, // int32
Speed = 4, // int8
Padding = 5, // int8[3]
TachoSensor = 8, // int32
Size = 12
}
function init() {
if (pwmMM) return
pwmMM = control.mmap("/dev/lms_pwm", 0, 0)
if (!pwmMM) control.fail("no PWM file")
motorMM = control.mmap("/dev/lms_motor", MotorDataOff.Size * DAL.NUM_OUTPUTS, 0)
if (!motorMM) control.fail("no motor file")
resetMotors()
let buf = output.createBuffer(1)
buf[0] = DAL.opProgramStart
writePWM(buf)
}
function writePWM(buf: Buffer): void {
init()
pwmMM.write(buf)
}
function readPWM(buf: Buffer): void {
init()
pwmMM.read(buf);
}
function mkCmd(out: Output, cmd: number, addSize: number) {
const b = output.createBuffer(2 + addSize)
b.setNumber(NumberFormat.UInt8LE, 0, cmd)
b.setNumber(NumberFormat.UInt8LE, 1, out)
return b
}
function resetMotors() {
reset(Output.ALL)
}
/**
* Stops all motors
*/
//% blockId=motorStopAll block="stop all motors"
//% weight=97
//% group="Motion"
export function stopAllMotors() {
const b = mkCmd(Output.ALL, DAL.opOutputStop, 0)
writePWM(b)
}
//% fixedInstances
export class Motor extends control.Component {
protected _port: Output;
protected _brake: boolean;
constructor(port: Output) {
super();
this._port = port;
this._brake = false;
}
/**
* Lazy initialization code
*/
protected __init() {
}
/**
* Gets the port where this motor is connected
*/
//%
//% group="Motion"
port(): Output {
this.__init();
return this._port;
}
/**
* Sets the automatic brake on or off when the motor is off
* @param brake a value indicating if the motor should break when off
*/
//% blockId=outputMotorSetBrakeMode block="set `icons.motorLarge` %motor|brake %brake"
//% brake.fieldEditor=toggleonoff
//% weight=60 blockGap=8
//% group="Motion"
setBrake(brake: boolean) {
this.__init();
this._brake = brake;
}
/**
* Reverses the motor polarity
*/
//% blockId=motorSetReversed block="set `icons.motorLarge` %motor|reversed %reversed"
//% reversed.fieldEditor=toggleonoff
//% weight=59
//% group="Motion"
setReversed(reversed: boolean) {
this.__init();
const b = mkCmd(this._port, DAL.opOutputPolarity, 1)
b.setNumber(NumberFormat.Int8LE, 2, reversed ? -1 : 1);
writePWM(b)
}
/**
* Stops the motor(s).
*/
//%
stop() {
this.__init();
stop(this._port, this._brake);
}
/**
* Resets the motor(s).
*/
//%
reset() {
this.__init();
reset(this._port);
}
/**
* Sets the speed of the motor.
* @param speed the speed from ``100`` full forward to ``-100`` full backward, eg: 50
*/
//% blockId=motorSetSpeed block="set speed of `icons.motorLarge` %motor|to %speed|%"
//% on.fieldEditor=toggleonoff
//% weight=99 blockGap=8
//% speed.min=-100 speed.max=100
//% group="Motion"
setSpeed(speed: number) {
this.__init();
speed = Math.clamp(-100, 100, speed >> 0);
if (!speed) // always stop
this.stop();
else
this.__setSpeed(speed);
}
protected __setSpeed(speed: number) {
}
/**
* Moves the motor by a number of rotations, degress or seconds
* @param value the move quantity, eg: 2
* @param unit the meaning of the value
* @param speed the speed from ``100`` full forward to ``-100`` full backward, eg: 50
*/
//% blockId=motorMove block="move `icons.motorLarge` %motor|for %value|%unit|at %speed|%"
//% weight=98 blockGap=8
//% speed.min=-100 speed.max=100
//% group="Motion"
move(value: number, unit: MoveUnit, speed: number) {
this.__init();
speed = Math.clamp(-100, 100, speed >> 0);
if (!speed) {
this.stop();
return;
}
let useSteps: boolean;
let stepsOrTime: number;
switch (unit) {
case MoveUnit.Rotations:
stepsOrTime = (value * 360) >> 0;
useSteps = true;
break;
case MoveUnit.Degrees:
stepsOrTime = value >> 0;
useSteps = true;
break;
default:
stepsOrTime = value;
useSteps = false;
break;
}
this.__move(useSteps, stepsOrTime, speed);
}
protected __move(steps: boolean, stepsOrTime: number, speed: number) {
}
}
//% fixedInstances
export class SingleMotor extends Motor {
private _large: boolean;
private _initialized: boolean;
constructor(port: Output, large: boolean) {
super(port);
this._large = large;
this.markUsed();
}
markUsed() {
motors.__motorUsed(this._port, this._large);
}
protected __init() {
if (!this._initialized) {
this._initialized = true;
// specify motor size on this port
const b = mkCmd(this._port, DAL.opOutputSetType, 1)
b.setNumber(NumberFormat.Int8LE, 2, this._large ? 0x07 : 0x08)
writePWM(b)
}
}
protected __setSpeed(speed: number) {
const b = mkCmd(this._port, DAL.opOutputSpeed, 1)
b.setNumber(NumberFormat.Int8LE, 2, speed)
writePWM(b)
}
protected __move(steps: boolean, stepsOrTime: number, speed: number) {
step(this._port, {
useSteps: steps,
step1: 0,
step2: stepsOrTime,
step3: 0,
speed: speed,
useBrake: this._brake
})
}
/**
* Gets motor actual speed.
* @param motor the port which connects to the motor
*/
//% blockId=motorSpeed block="`icons.motorLarge` %motor|speed"
//% weight=72 blockGap=8
//% group="Sensors"
speed(): number {
this.__init();
return getMotorData(this._port).actualSpeed;
}
/**
* Gets motor step count.
* @param motor the port which connects to the motor
*/
//% blockId=motorCount block="`icons.motorLarge` %motor|count"
//% weight=71 blockGap=8
//% group="Sensors"
count(): number {
this.__init();
return getMotorData(this._port).count;
}
/**
* Gets motor tacho count.
* @param motor the port which connects to the motor
*/
//% blockId=motorTachoCount block="`icons.motorLarge` %motor|tacho count"
//% weight=70
//% group="Sensors"
tachoCount(): number {
this.__init();
return getMotorData(this._port).tachoCount;
}
/**
* Clears the motor count
*/
//% group="Motion"
clearCount() {
this.__init();
const b = mkCmd(this._port, DAL.opOutputClearCount, 0)
writePWM(b)
for (let i = 0; i < DAL.NUM_OUTPUTS; ++i) {
if (this._port & (1 << i)) {
motorMM.setNumber(NumberFormat.Int32LE, i * MotorDataOff.Size + MotorDataOff.TachoSensor, 0)
}
}
}
}
//% whenUsed fixedInstance block="large A"
export const largeA = new SingleMotor(Output.A, true);
//% whenUsed fixedInstance block="large B"
export const largeB = new SingleMotor(Output.B, true);
//% whenUsed fixedInstance block="large C"
export const largeC = new SingleMotor(Output.C, true);
//% whenUsed fixedInstance block="large D"
export const largeD = new SingleMotor(Output.D, true);
//% whenUsed fixedInstance block="medium A"
export const mediumA = new SingleMotor(Output.A, false);
//% whenUsed fixedInstance block="medium B"
export const mediumB = new SingleMotor(Output.B, false);
//% whenUsed fixedInstance block="medium C"
export const mediumC = new SingleMotor(Output.C, false);
//% whenUsed fixedInstance block="medium D"
export const mediumD = new SingleMotor(Output.D, false);
//% fixedInstances
export class SynchedMotorPair extends Motor {
private _initialized: boolean;
constructor(ports: Output) {
super(ports);
this.markUsed();
}
markUsed() {
motors.__motorUsed(this._port, true);
}
protected __init() {
if (!this._initialized) {
this._initialized = true;
const b = mkCmd(this._port, DAL.opOutputSetType, 1)
b.setNumber(NumberFormat.Int8LE, 2, 0x07) // large motor
writePWM(b)
}
}
protected __setSpeed(speed: number) {
syncMotors(this._port, {
speed: speed,
turnRatio: 0,
useBrake: !!this._brake
})
}
protected __move(steps: boolean, stepsOrTime: number, speed: number) {
syncMotors(this._port, {
useSteps: steps,
speed: speed,
turnRatio: 100, // same speed
stepsOrTime: stepsOrTime,
useBrake: this._brake
});
}
/**
* Turns the motor and the follower motor by a number of rotations
* @param value the move quantity, eg: 2
* @param unit the meaning of the value
* @param steering the ratio of power sent to the follower motor, from ``-100`` to ``100``
* @param speed the speed from ``100`` full forward to ``-100`` full backward, eg: 50
*/
//% blockId=motorPairTurn block="steer %chassis|%steering|%|at speed %speed|%|by %value|%unit"
//% weight=9 blockGap=8
//% steering.min=-100 steering=100
//% inlineInputMode=inline
//% group="Chassis"
steer(steering: number, speed: number, value: number, unit: MoveUnit) {
speed = Math.clamp(-100, 100, speed >> 0);
if (!speed) {
stop(this._port, this._brake);
return;
}
const turnRatio = Math.clamp(-200, 200, steering + 100 >> 0);
let useSteps: boolean;
let stepsOrTime: number;
switch (unit) {
case MoveUnit.Rotations:
stepsOrTime = (value * 360) >> 0;
useSteps = true;
break;
case MoveUnit.Degrees:
stepsOrTime = value >> 0;
useSteps = true;
break;
default:
stepsOrTime = value;
useSteps = false;
break;
}
syncMotors(this._port, {
useSteps: useSteps,
speed: speed,
turnRatio: turnRatio,
stepsOrTime: stepsOrTime,
useBrake: this._brake
});
}
/**
* The Move Tank block can make a robot drive forward, backward, turn, or stop.
* Use the Move Tank block for robot vehicles that have two Large Motors,
* with one motor driving the left side of the vehicle and the other the right side.
* You can make the two motors go at different speeds or in different directions
* to make your robot turn.
* @param value the amount of movement, eg: 2
* @param unit
* @param speedLeft the speed on the left motor, eg: 50
* @param speedRight the speed on the right motor, eg: 50
*/
//% blockId=motorPairTank block="tank %chassis|left %speedLeft|%|right %speedRight|%|by %value|%unit"
//% weight=9 blockGap=8
//% speedLeft.min=-100 speedLeft=100
//% speedRight.min=-100 speedRight=100
//% inlineInputMode=inline
//% group="Chassis"
tank(speedLeft: number, speedRight: number, value: number, unit: MoveUnit) {
speedLeft = Math.clamp(speedLeft >> 0, -100, 100);
speedRight = Math.clamp(speedRight >> 0, -100, 100);
const steering = (speedRight * 100 / speedLeft) >> 0;
this.steer(speedLeft, steering, value, unit);
}
}
//% whenUsed fixedInstance block="large B+C"
export const largeBC = new SynchedMotorPair(Output.BC);
//% whenUsed fixedInstance block="large A+D"
export const largeAD = new SynchedMotorPair(Output.AD);
//% whenUsed fixedInstance block="large A+B"
export const largeAB = new SynchedMotorPair(Output.AB);
//% whenUsed fixedInstance block="large C+D"
export const largeCD = new SynchedMotorPair(Output.CD);
function reset(out: Output) {
let b = mkCmd(out, DAL.opOutputReset, 0)
writePWM(b)
}
function outOffset(out: Output) {
for (let i = 0; i < DAL.NUM_OUTPUTS; ++i) {
if (out & (1 << i))
return i * MotorDataOff.Size
}
return 0
}
interface MotorData {
actualSpeed: number; // -100..+100
tachoCount: number;
count: number;
}
// only a single output at a time
function getMotorData(out: Output): MotorData {
init()
let buf = motorMM.slice(outOffset(out), MotorDataOff.Size)
return {
actualSpeed: buf.getNumber(NumberFormat.Int8LE, MotorDataOff.Speed),
tachoCount: buf.getNumber(NumberFormat.Int32LE, MotorDataOff.TachoCounts),
count: buf.getNumber(NumberFormat.Int32LE, MotorDataOff.TachoSensor),
}
}
interface SyncOptions {
useSteps?: boolean;
speed: number;
turnRatio: number;
stepsOrTime?: number;
useBrake?: boolean;
}
function syncMotors(out: Output, opts: SyncOptions) {
const cmd = opts.useSteps ? DAL.opOutputStepSync : DAL.opOutputTimeSync;
const b = mkCmd(out, cmd, 11);
const speed = Math.clamp(-100, 100, opts.speed);
const turnRatio = Math.clamp(-200, 200, opts.turnRatio);
b.setNumber(NumberFormat.Int8LE, 2, speed)
// note that b[3] is padding
b.setNumber(NumberFormat.Int16LE, 4 + 4 * 0, turnRatio)
// b[6], b[7] is padding
b.setNumber(NumberFormat.Int32LE, 4 + 4 * 1, opts.stepsOrTime || 0)
b.setNumber(NumberFormat.Int8LE, 4 + 4 * 2, opts.useBrake ? 1 : 0)
writePWM(b)
}
interface StepOptions {
power?: number;
speed?: number; // either speed or power has to be present
step1: number;
step2: number;
step3: number;
useSteps?: boolean; // otherwise use milliseconds
useBrake?: boolean;
}
function start(out: Output) {
const b = mkCmd(out, DAL.opOutputStart, 0)
writePWM(b);
}
function stop(out: Output, brake: boolean) {
const b = mkCmd(out, DAL.opOutputStop, 1)
b.setNumber(NumberFormat.UInt8LE, 2, brake ? 1 : 0)
writePWM(b);
}
function step(out: Output, opts: StepOptions) {
let op = opts.useSteps ? DAL.opOutputStepSpeed : DAL.opOutputTimeSpeed
let speed = opts.speed
if (speed == null) {
speed = opts.power
op = opts.useSteps ? DAL.opOutputStepPower : DAL.opOutputTimePower
if (speed == null)
return
}
speed = Math.clamp(-100, 100, speed)
let b = mkCmd(out, op, 15)
b.setNumber(NumberFormat.Int8LE, 2, speed)
// note that b[3] is padding
b.setNumber(NumberFormat.Int32LE, 4 + 4 * 0, opts.step1)
b.setNumber(NumberFormat.Int32LE, 4 + 4 * 1, opts.step2)
b.setNumber(NumberFormat.Int32LE, 4 + 4 * 2, opts.step3)
b.setNumber(NumberFormat.Int8LE, 4 + 4 * 3, opts.useBrake ? 1 : 0)
writePWM(b)
}
const types = [0, 0, 0, 0]
export function setType(out: Output, type: OutputType) {
let b = mkCmd(out, DAL.opOutputSetType, 3)
for (let i = 0; i < 4; ++i) {
if (out & (1 << i)) {
types[i] = type
}
b.setNumber(NumberFormat.UInt8LE, i + 1, types[i])
}
writePWM(b)
}
}
interface Buffer {
[index: number]: number;
// rest defined in buffer.cpp
}