pxt-ev3/libs/core/output.ts
Sam El-Husseini a433988929
New motor field editor (#470)
* New motor field editor showing two dropdown, first to select the type and the second to select the port.
2018-04-09 15:59:28 -07:00

715 lines
23 KiB
TypeScript

enum Output {
//% block="A"
A = 0x01,
//% block="B"
B = 0x02,
//% block="C"
C = 0x04,
//% block="D"
D = 0x08,
//% block="B+C"
BC = Output.B | Output.C,
//% block="A+B"
AB = Output.A | Output.B,
//% block="C+D"
CD = Output.C | Output.D,
//% block="A+D"
AD = Output.A | Output.D,
//% block="All"
ALL = 0x0f
}
enum OutputType {
None = 0,
Tacho = 7,
MiniTacho = 8,
}
enum MoveUnit {
//% block="rotations"
Rotations,
//% block="degrees"
Degrees,
//% block="seconds"
Seconds,
//% block="milliseconds"
MilliSeconds
}
namespace motors {
let pwmMM: MMap
let motorMM: MMap
const enum MotorDataOff {
TachoCounts = 0, // int32
Speed = 4, // int8
Padding = 5, // int8[3]
TachoSensor = 8, // int32
Size = 12
}
function init() {
if (pwmMM) return
pwmMM = control.mmap("/dev/lms_pwm", 0, 0)
if (!pwmMM) control.fail("no PWM file")
motorMM = control.mmap("/dev/lms_motor", MotorDataOff.Size * DAL.NUM_OUTPUTS, 0)
if (!motorMM) control.fail("no motor file")
resetAllMotors()
const buf = output.createBuffer(1)
buf[0] = DAL.opProgramStart
writePWM(buf)
}
/**
* Sends a command to the motors device
* @param buf the command buffer
*/
//%
export function writePWM(buf: Buffer): void {
init()
pwmMM.write(buf)
}
/**
* Sends and receives a message from the motors device
* @param buf message buffer
*/
//%
export function readPWM(buf: Buffer): void {
init()
pwmMM.read(buf);
}
/**
* Allocates a message buffer
* @param out ports
* @param cmd command id
* @param addSize required additional bytes
*/
//%
export function mkCmd(out: Output, cmd: number, addSize: number) {
const b = output.createBuffer(2 + addSize)
b.setNumber(NumberFormat.UInt8LE, 0, cmd)
b.setNumber(NumberFormat.UInt8LE, 1, out)
return b
}
export function outputToName(out: Output): string {
let r = "";
for (let i = 0; i < DAL.NUM_OUTPUTS; ++i) {
if (out & (1 << i)) {
if (r.length > 0) r += "+";
r += "ABCD"[i];
}
}
return r;
}
/**
* Stops all motors
*/
//% blockId=motorStopAll block="stop all motors"
//% weight=1
//% group="Move"
//% help=motors/stop-all
export function stopAll() {
const b = mkCmd(Output.ALL, DAL.opOutputStop, 0)
writePWM(b)
}
/**
* Resets all motors
*/
//% group="Move"
export function resetAllMotors() {
reset(Output.ALL)
}
//% fixedInstances
export class MotorBase extends control.Component {
protected _port: Output;
protected _portName: string;
protected _brake: boolean;
private _initialized: boolean;
private _init: () => void;
private _run: (speed: number) => void;
private _move: (steps: boolean, stepsOrTime: number, speed: number) => void;
constructor(port: Output, init: () => void, run: (speed: number) => void, move: (steps: boolean, stepsOrTime: number, speed: number) => void) {
super();
this._port = port;
this._portName = outputToName(this._port);
this._brake = false;
this._initialized = false;
this._init = init;
this._run = run;
this._move = move;
}
/**
* Lazy initialization code
*/
protected init() {
if (!this._initialized) {
this._initialized = true;
this._init();
}
}
/**
* Sets the automatic brake on or off when the motor is off
* @param brake a value indicating if the motor should break when off
*/
//% blockId=outputMotorSetBrakeMode block="set %motor|brake %brake=toggleOnOff"
//% motor.fieldEditor="motors"
//% weight=60 blockGap=8
//% group="Properties"
//% help=motors/motor/set-brake
setBrake(brake: boolean) {
this.init();
this._brake = brake;
}
/**
* Inverts the motor polarity
*/
//% blockId=motorSetInverted block="set %motor|inverted %reversed=toggleOnOff"
//% motor.fieldEditor="motors"
//% weight=59 blockGap=8
//% group="Properties"
//% help=motors/motor/set-inverted
setInverted(inverted: boolean) {
this.init();
const b = mkCmd(this._port, DAL.opOutputPolarity, 1)
b.setNumber(NumberFormat.Int8LE, 2, inverted ? 0 : 1);
writePWM(b)
}
/**
* Stops the motor(s).
*/
//% weight=6 blockGap=8
//% group="Move"
//% help=motors/motor/stop
//% blockId=motorStop block="stop %motors|"
//% motors.fieldEditor="motors"
stop() {
this.init();
stop(this._port, this._brake);
this.settle();
}
private settle() {
// if we've recently completed a motor command with brake
// allow 500ms for robot to settle
if(this._brake)
pause(500);
}
/**
* Resets the motor(s).
*/
//% weight=5
//% group="Move"
//% help=motors/motor/reset
//% blockId=motorReset block="reset %motors|"
//% motors.fieldEditor="motors"
reset() {
this.init();
reset(this._port);
}
/**
* Runs the motor at a given speed for limited time or distance.
* @param speed the speed from ``100`` full forward to ``-100`` full backward, eg: 50
* @param value (optional) measured distance or rotation
* @param unit (optional) unit of the value
*/
//% blockId=motorRun block="run %motor at %speed=motorSpeedPicker|\\%||for %value %unit"
//% weight=100 blockGap=8
//% group="Move"
//% motor.fieldEditor="motors"
//% expandableArgumentMode=toggle
//% help=motors/motor/run
run(speed: number, value: number = 0, unit: MoveUnit = MoveUnit.MilliSeconds) {
this.init();
speed = Math.clamp(-100, 100, speed >> 0);
// stop if speed is 0
if (!speed) {
this.stop();
return;
}
// special: 0 is infinity
if (value == 0) {
this._run(speed);
return;
}
// timed motor moves
let useSteps: boolean;
let stepsOrTime: number;
switch (unit) {
case MoveUnit.Rotations:
stepsOrTime = (value * 360) >> 0;
useSteps = true;
break;
case MoveUnit.Degrees:
stepsOrTime = value >> 0;
useSteps = true;
break;
case MoveUnit.Seconds:
stepsOrTime = (value * 1000) >> 0;
useSteps = false;
break;
default:
stepsOrTime = value;
useSteps = false;
break;
}
this._move(useSteps, stepsOrTime, speed);
// wait till motor is done with this work
this.pauseUntilReady();
// allow robot to settle
this.settle();
}
/**
* Returns a value indicating if the motor is still running a previous command.
*/
//% group="Sensors"
isReady(): boolean {
this.init();
const buf = mkCmd(this._port, DAL.opOutputTest, 2);
readPWM(buf)
const flags = buf.getNumber(NumberFormat.UInt8LE, 2);
return (~flags & this._port) == this._port;
}
/**
* Pauses the execution until the previous command finished.
* @param timeOut optional maximum pausing time in milliseconds
*/
//% blockId=motorPauseUntilRead block="pause until %motor|ready"
//% motor.fieldEditor="motors"
//% weight=90
//% group="Move"
pauseUntilReady(timeOut?: number) {
pauseUntil(() => this.isReady(), timeOut);
}
}
//% fixedInstances
export class Motor extends MotorBase {
private _large: boolean;
private _regulated: boolean;
constructor(port: Output, large: boolean) {
super(port, () => this.__init(), (speed) => this.__setSpeed(speed), (steps, stepsOrTime, speed) => this.__move(steps, stepsOrTime, speed));
this._large = large;
this._regulated = true;
this.markUsed();
}
markUsed() {
motors.__motorUsed(this._port, this._large);
}
private __init() {
// specify motor size on this port
const b = mkCmd(outOffset(this._port), DAL.opOutputSetType, 1)
b.setNumber(NumberFormat.Int8LE, 2, this._large ? 0x07 : 0x08)
writePWM(b)
}
private __setSpeed(speed: number) {
const b = mkCmd(this._port, this._regulated ? DAL.opOutputSpeed : DAL.opOutputPower, 1)
b.setNumber(NumberFormat.Int8LE, 2, speed)
writePWM(b)
if (speed) {
writePWM(mkCmd(this._port, DAL.opOutputStart, 0))
}
}
private __move(steps: boolean, stepsOrTime: number, speed: number) {
step(this._port, {
useSteps: steps,
step1: 0,
step2: stepsOrTime,
step3: 0,
speed: this._regulated ? speed : undefined,
power: this._regulated ? undefined : speed,
useBrake: this._brake
})
}
/**
* Indicates if the motor speed should be regulated. Default is true.
* @param value true for regulated motor
*/
//% blockId=outputMotorSetRegulated block="set %motor|regulated %value=toggleOnOff"
//% motor.fieldEditor="motors"
//% weight=58
//% group="Properties"
//% help=motors/motor/set-regulated
setRegulated(value: boolean) {
this._regulated = value;
}
/**
* Gets motor actual speed.
* @param motor the port which connects to the motor
*/
//% blockId=motorSpeed block="%motor|speed"
//% motor.fieldEditor="motors"
//% weight=72
//% blockGap=8
//% group="Counters"
//% help=motors/motor/speed
speed(): number {
this.init();
return getMotorData(this._port).actualSpeed;
}
/**
* Gets motor angle.
* @param motor the port which connects to the motor
*/
//% blockId=motorAngle block="%motor|angle"
//% motor.fieldEditor="motors"
//% weight=70
//% blockGap=8
//% group="Counters"
//% help=motors/motor/angle
angle(): number {
this.init();
return getMotorData(this._port).count;
}
/**
* Clears the motor count
*/
//% blockId=motorClearCount block="clear %motor|counters"
//% motor.fieldEditor="motors"
//% weight=68
//% blockGap=8
//% group="Counters"
//% help=motors/motor/clear-counts
clearCounts() {
this.init();
const b = mkCmd(this._port, DAL.opOutputClearCount, 0)
writePWM(b)
for (let i = 0; i < DAL.NUM_OUTPUTS; ++i) {
if (this._port & (1 << i)) {
motorMM.setNumber(NumberFormat.Int32LE, i * MotorDataOff.Size + MotorDataOff.TachoSensor, 0)
}
}
}
/**
* Returns the status of the motor
*/
//%
toString(): string {
return `${this._large ? "" : "M"}${this._portName} ${this.speed()}% ${this.angle()}>`;
}
}
//% whenUsed fixedInstance block="large motor A" jres=icons.portA
export const largeA = new Motor(Output.A, true);
//% whenUsed fixedInstance block="large motor B" jres=icons.portB
export const largeB = new Motor(Output.B, true);
//% whenUsed fixedInstance block="large motor C" jres=icons.portC
export const largeC = new Motor(Output.C, true);
//% whenUsed fixedInstance block="large motor D" jres=icons.portD
export const largeD = new Motor(Output.D, true);
//% whenUsed fixedInstance block="medium motor A" jres=icons.portA
export const mediumA = new Motor(Output.A, false);
//% whenUsed fixedInstance block="medium motor B" jres=icons.portB
export const mediumB = new Motor(Output.B, false);
//% whenUsed fixedInstance block="medium motor C" jres=icons.portC
export const mediumC = new Motor(Output.C, false);
//% whenUsed fixedInstance block="medium motor D" jres=icons.portD
export const mediumD = new Motor(Output.D, false);
//% fixedInstances
export class SynchedMotorPair extends MotorBase {
constructor(ports: Output) {
super(ports, () => this.__init(), (speed) => this.__setSpeed(speed), (steps, stepsOrTime, speed) => this.__move(steps, stepsOrTime, speed));
this.markUsed();
}
markUsed() {
motors.__motorUsed(this._port, true);
}
private __init() {
for (let i = 0; i < DAL.NUM_OUTPUTS; ++i) {
if (this._port & (1 << i)) {
const b = mkCmd(outOffset(1 << i), DAL.opOutputSetType, 1)
b.setNumber(NumberFormat.Int8LE, 2, 0x07) // large motor
writePWM(b)
}
}
}
private __setSpeed(speed: number) {
syncMotors(this._port, {
speed: speed,
turnRatio: 0, // same speed
useBrake: !!this._brake
})
}
private __move(steps: boolean, stepsOrTime: number, speed: number) {
syncMotors(this._port, {
useSteps: steps,
speed: speed,
turnRatio: 0, // same speed
stepsOrTime: stepsOrTime,
useBrake: this._brake
});
}
/**
* The Move Tank block can make a robot drive forward, backward, turn, or stop.
* Use the Move Tank block for robot vehicles that have two Large Motors,
* with one motor driving the left side of the vehicle and the other the right side.
* You can make the two motors go at different speeds or in different directions
* to make your robot turn.
* @param speedLeft the speed on the left motor, eg: 50
* @param speedRight the speed on the right motor, eg: 50
* @param value (optional) move duration or rotation
* @param unit (optional) unit of the value
*/
//% blockId=motorPairTank block="tank **motors** %motors %speedLeft=motorSpeedPicker|\\% %speedRight=motorSpeedPicker|\\%||for %value %unit"
//% motors.fieldEditor="ports"
//% weight=96 blockGap=8
//% inlineInputMode=inline
//% group="Move"
//% expandableArgumentMode=toggle
//% help=motors/synced/tank
tank(speedLeft: number, speedRight: number, value: number = 0, unit: MoveUnit = MoveUnit.MilliSeconds) {
this.init();
speedLeft = Math.clamp(-100, 100, speedLeft >> 0);
speedRight = Math.clamp(-100, 100, speedRight >> 0);
const speed = Math.abs(speedLeft) > Math.abs(speedRight) ? speedLeft : speedRight;
const turnRatio = speedLeft == speed
? (100 - speedRight / speedLeft * 100)
: (speedLeft / speedRight * 100 - 100);
this.steer(turnRatio, speed, value, unit);
}
/**
* Turns the motor and the follower motor by a number of rotations
* @param turnRatio the ratio of power sent to the follower motor, from ``-200`` to ``200``, eg: 0
* @param speed the speed from ``100`` full forward to ``-100`` full backward, eg: 50
* @param value (optional) move duration or rotation
* @param unit (optional) unit of the value
*/
//% blockId=motorPairSteer block="steer **motors** %chassis turn ratio %turnRatio=motorTurnRatioPicker speed %speed=motorSpeedPicker|\\%||for %value %unit"
//% chassis.fieldEditor="ports"
//% weight=95
//% turnRatio.min=-200 turnRatio=200
//% inlineInputMode=inline
//% group="Move"
//% expandableArgumentMode=toggle
//% help=motors/synced/steer
steer(turnRatio: number, speed: number, value: number = 0, unit: MoveUnit = MoveUnit.MilliSeconds) {
this.init();
speed = Math.clamp(-100, 100, speed >> 0);
if (!speed) {
stop(this._port, this._brake);
return;
}
turnRatio = Math.clamp(-200, 200, turnRatio >> 0);
let useSteps: boolean;
let stepsOrTime: number;
switch (unit) {
case MoveUnit.Rotations:
stepsOrTime = (value * 360) >> 0;
useSteps = true;
break;
case MoveUnit.Degrees:
stepsOrTime = value >> 0;
useSteps = true;
break;
case MoveUnit.Seconds:
stepsOrTime = (value * 1000) >> 0;
useSteps = false;
break;
default:
stepsOrTime = value >> 0;
useSteps = false;
break;
}
syncMotors(this._port, {
useSteps: useSteps,
speed: speed,
turnRatio: turnRatio,
stepsOrTime: stepsOrTime,
useBrake: this._brake
});
}
/**
* Returns the name(s) of the motor
*/
//%
toString(): string {
this.init();
let r = outputToName(this._port);
for (let i = 0; i < DAL.NUM_OUTPUTS; ++i) {
if (this._port & (1 << i)) {
r += ` ${getMotorData(1 << i).actualSpeed}%`
}
}
return r;
}
}
//% whenUsed fixedInstance block="B+C" jres=icons.portBC
export const largeBC = new SynchedMotorPair(Output.BC);
//% whenUsed fixedInstance block="A+D" jres=icons.portAD
export const largeAD = new SynchedMotorPair(Output.AD);
//% whenUsed fixedInstance block="A+B" jres=icons.portAB
export const largeAB = new SynchedMotorPair(Output.AB);
//% whenUsed fixedInstance block="C+D" jres=icons.portCD
export const largeCD = new SynchedMotorPair(Output.CD);
function reset(out: Output) {
writePWM(mkCmd(out, DAL.opOutputReset, 0))
writePWM(mkCmd(out, DAL.opOutputClearCount, 0))
}
function outOffset(out: Output) {
for (let i = 0; i < DAL.NUM_OUTPUTS; ++i) {
if (out & (1 << i))
return i * MotorDataOff.Size
}
return 0
}
export interface MotorData {
actualSpeed: number; // -100..+100
tachoCount: number;
count: number;
}
// only a single output at a time
function getMotorData(out: Output): MotorData {
init()
const buf = motorMM.slice(outOffset(out), MotorDataOff.Size)
return {
actualSpeed: buf.getNumber(NumberFormat.Int8LE, MotorDataOff.Speed),
tachoCount: buf.getNumber(NumberFormat.Int32LE, MotorDataOff.TachoCounts),
count: buf.getNumber(NumberFormat.Int32LE, MotorDataOff.TachoSensor),
}
}
export function getAllMotorData(): MotorData[] {
init();
return [Output.A, Output.B, Output.C, Output.D].map(out => getMotorData(out));
}
interface SyncOptions {
useSteps?: boolean;
speed: number;
turnRatio: number;
stepsOrTime?: number;
useBrake?: boolean;
}
function syncMotors(out: Output, opts: SyncOptions) {
const cmd = opts.useSteps ? DAL.opOutputStepSync : DAL.opOutputTimeSync;
const b = mkCmd(out, cmd, 11);
const speed = Math.clamp(-100, 100, opts.speed);
const turnRatio = Math.clamp(-200, 200, opts.turnRatio);
b.setNumber(NumberFormat.Int8LE, 2, speed)
// note that b[3] is padding
b.setNumber(NumberFormat.Int16LE, 4 + 4 * 0, turnRatio)
// b[6], b[7] is padding
b.setNumber(NumberFormat.Int32LE, 4 + 4 * 1, opts.stepsOrTime || 0)
b.setNumber(NumberFormat.Int8LE, 4 + 4 * 2, opts.useBrake ? 1 : 0)
writePWM(b)
}
interface StepOptions {
power?: number;
speed?: number; // either speed or power has to be present
step1: number;
step2: number;
step3: number;
useSteps?: boolean; // otherwise use milliseconds
useBrake?: boolean;
}
function start(out: Output) {
const b = mkCmd(out, DAL.opOutputStart, 0)
writePWM(b);
}
function stop(out: Output, brake: boolean) {
const b = mkCmd(out, DAL.opOutputStop, 1)
b.setNumber(NumberFormat.UInt8LE, 2, brake ? 1 : 0)
writePWM(b);
}
function step(out: Output, opts: StepOptions) {
let op = opts.useSteps ? DAL.opOutputStepSpeed : DAL.opOutputTimeSpeed
let speed = opts.speed
if (speed == null) {
speed = opts.power
op = opts.useSteps ? DAL.opOutputStepPower : DAL.opOutputTimePower
if (speed == null)
return
}
speed = Math.clamp(-100, 100, speed)
let b = mkCmd(out, op, 15)
b.setNumber(NumberFormat.Int8LE, 2, speed)
// note that b[3] is padding
b.setNumber(NumberFormat.Int32LE, 4 + 4 * 0, opts.step1)
b.setNumber(NumberFormat.Int32LE, 4 + 4 * 1, opts.step2)
b.setNumber(NumberFormat.Int32LE, 4 + 4 * 2, opts.step3)
b.setNumber(NumberFormat.Int8LE, 4 + 4 * 3, opts.useBrake ? 1 : 0)
writePWM(b)
}
const types = [0, 0, 0, 0]
export function setType(out: Output, type: OutputType) {
let b = mkCmd(out, DAL.opOutputSetType, 3)
for (let i = 0; i < 4; ++i) {
if (out & (1 << i)) {
types[i] = type
}
b.setNumber(NumberFormat.UInt8LE, i + 1, types[i])
}
writePWM(b)
}
}
interface Buffer {
[index: number]: number;
// rest defined in buffer.cpp
}