Compare commits
15 Commits
v1.2.16
...
drivingbas
Author | SHA1 | Date | |
---|---|---|---|
|
540a097198 | ||
|
93cfb76f68 | ||
|
8bc3fdc8ba | ||
|
e8a1e73cf5 | ||
|
e9b2b239ad | ||
|
5ad2288a9f | ||
|
92d13ef343 | ||
|
471ca5d915 | ||
|
f745079728 | ||
|
d179f18ef3 | ||
|
805fc6c787 | ||
|
374bbb8304 | ||
|
25452efc92 | ||
|
80b9c715b2 | ||
|
cb816c91ad |
@@ -38,10 +38,7 @@ Next you need to enable the experimental features (this may change in the future
|
||||
|
||||
## Download over Bluetooth
|
||||
|
||||
* go to the **beta** editor https://makecode.mindstorms.com/beta
|
||||
|
||||
This feature is not yet released so make sure to use the beta editor.
|
||||
|
||||
* go to https://makecode.mindstorms.com/
|
||||
* click on **Download** to start a file download as usual
|
||||
* on the download dialog, you should see a **Bluetooth** button. Click on the
|
||||
**Bluetooth** button to enable the mode.
|
||||
@@ -51,8 +48,9 @@ This feature is not yet released so make sure to use the beta editor.
|
||||
## Choosing the correct serial port
|
||||
|
||||
Unfortunately, the browser dialog does not make it easy to select which serial port is the brick.
|
||||
On Windows, it typically reads "Standard Serial over Bluetooth" and you may
|
||||
have multiple of those if you've paired different bricks.
|
||||
|
||||
* On Windows, choose ``Standard Serial over Bluetooth``. There might be multiple of those but only one works. Try your luck! Once you know the COM port number, remember it for the next time around.
|
||||
* On Mac OS, choose ``cu.BRICKNAME-SerialPort``
|
||||
|
||||
## Known issues
|
||||
|
||||
|
@@ -1,3 +1,3 @@
|
||||
{
|
||||
"appref": "v1.2.15"
|
||||
"appref": "v1.2.18"
|
||||
}
|
||||
|
BIN
docs/static/tutorials/calibrate-gyro.png
vendored
Normal file
BIN
docs/static/tutorials/calibrate-gyro.png
vendored
Normal file
Binary file not shown.
After Width: | Height: | Size: 13 KiB |
BIN
docs/static/tutorials/drifter.png
vendored
Normal file
BIN
docs/static/tutorials/drifter.png
vendored
Normal file
Binary file not shown.
After Width: | Height: | Size: 15 KiB |
BIN
docs/static/tutorials/move-straight-with-gyro.png
vendored
Normal file
BIN
docs/static/tutorials/move-straight-with-gyro.png
vendored
Normal file
Binary file not shown.
After Width: | Height: | Size: 16 KiB |
BIN
docs/static/tutorials/turn-with-gyro.png
vendored
Normal file
BIN
docs/static/tutorials/turn-with-gyro.png
vendored
Normal file
Binary file not shown.
After Width: | Height: | Size: 10 KiB |
@@ -25,6 +25,11 @@ Step by step guides to coding your @boardname@.
|
||||
"description": "Use the color sensor to follow line or detect colors",
|
||||
"url":"/tutorials/color-sensor",
|
||||
"imageUrl":"/static/tutorials/what-color.png"
|
||||
}, {
|
||||
"name": "Gyro",
|
||||
"description": "Drive straight or turn more precisely with the gyro",
|
||||
"url":"/tutorials/gyro",
|
||||
"imageUrl":"/static/tutorials/calibrate-gyro.png"
|
||||
}, {
|
||||
"name": "Ultrasonic Sensor",
|
||||
"description": "Use the ultrasonic sensor to detect obstacles",
|
||||
|
37
docs/tutorials/calibrate-gyro.md
Normal file
37
docs/tutorials/calibrate-gyro.md
Normal file
@@ -0,0 +1,37 @@
|
||||
# Calibrate Gyro
|
||||
|
||||
## Introduction @fullscreen
|
||||
|
||||
The gyroscope is a very useful sensor in the EV3 system. It detects the rotation rate
|
||||
which can be very useful to correct the trajectory of the robot and do precise turns.
|
||||
|
||||
However, the sensor can be imprecise and subject to drifting. It is recommend to
|
||||
calibrate your sensor at least once after starting your brick. You don't have to
|
||||
recalibrate on every run.
|
||||
|
||||
* [EV3 Driving Base](https://le-www-live-s.legocdn.com/sc/media/lessons/mindstorms-ev3/building-instructions/ev3-rem-driving-base-79bebfc16bd491186ea9c9069842155e.pdf)
|
||||
* [EV3 Driving Base with Gyro](https://le-www-live-s.legocdn.com/sc/media/lessons/mindstorms-ev3/building-instructions/ev3-gyro-sensor-driving-base-a521f8ebe355c281c006418395309e15.pdf)
|
||||
|
||||
|
||||
## Step 1 Show ports
|
||||
|
||||
Add the ``||brick:show ports||`` to see the status of the gyroscope.
|
||||
|
||||
```blocks
|
||||
brick.showPorts()
|
||||
```
|
||||
|
||||
|
||||
## Step 2 Calibration
|
||||
|
||||
Add a ``||sensors:calibrate gyro||`` block to calibrate the gyro. The block
|
||||
detects if the sensor is present and does a full reset of the sensor if necessary.
|
||||
|
||||
```blocks
|
||||
brick.showPorts()
|
||||
sensors.gyro2.calibrate()
|
||||
```
|
||||
|
||||
## Step 3 Download and run @fullscreen
|
||||
|
||||
Download this program to your brick and press the ENTER button.
|
@@ -24,6 +24,18 @@
|
||||
"name": "Bluetooth download (beta)",
|
||||
"description": "EXPERIMENTAL! Learn how to download code via Bluetooth.",
|
||||
"youTubeId": "VIq8-6Egtqs"
|
||||
}, {
|
||||
"name": "Turn with Gyro",
|
||||
"description": "Use the gyro for precise turns.",
|
||||
"youTubeId": "I7ncuXAfBwk"
|
||||
}, {
|
||||
"name": "Moving with Gyro",
|
||||
"description": "Use the gyro for correct the robot trajectory.",
|
||||
"youTubeId": "ufiOPvW37xc"
|
||||
}, {
|
||||
"name": "Line following with 1 color sensor",
|
||||
"description": "Simple line following using the color sensor.",
|
||||
"youTubeId": "_LeduyKQVjg"
|
||||
}]
|
||||
```
|
||||
|
||||
|
34
docs/tutorials/drifter.md
Normal file
34
docs/tutorials/drifter.md
Normal file
@@ -0,0 +1,34 @@
|
||||
# Drifter
|
||||
|
||||
Use this program to try out the gyro sensor and the effect of drifting.
|
||||
|
||||
```typescript
|
||||
// this loop shows the rate, angle and drift of the robot
|
||||
forever(() => {
|
||||
brick.showValue("rate", sensors.gyro2.rate(), 1)
|
||||
brick.showValue("angle", sensors.gyro2.angle(), 2)
|
||||
brick.showValue("drift", sensors.gyro2.drift(), 3)
|
||||
})
|
||||
// this loop shows wheter the sensor is calibrating
|
||||
forever(() => {
|
||||
brick.showString(sensors.gyro2.isCalibrating() ? "calibrating..." : "", 4)
|
||||
})
|
||||
// instructions on how to use the buttons
|
||||
brick.showString("ENTER: calibrate", 7)
|
||||
brick.showString(" (reset+drift)", 8)
|
||||
brick.showString("LEFT: reset", 9)
|
||||
brick.showString("RIGHT: compute drift", 10)
|
||||
|
||||
// enter -> calibrate
|
||||
brick.buttonEnter.onEvent(ButtonEvent.Pressed, function () {
|
||||
sensors.gyro2.calibrate()
|
||||
})
|
||||
// right -> compute drift
|
||||
brick.buttonRight.onEvent(ButtonEvent.Pressed, function () {
|
||||
sensors.gyro2.computeDrift()
|
||||
})
|
||||
// left -> reset
|
||||
brick.buttonLeft.onEvent(ButtonEvent.Pressed, function () {
|
||||
sensors.gyro2.reset()
|
||||
})
|
||||
```
|
31
docs/tutorials/gyro.md
Normal file
31
docs/tutorials/gyro.md
Normal file
@@ -0,0 +1,31 @@
|
||||
# Gyro tutorials
|
||||
|
||||
## Tutorials
|
||||
|
||||
```codecard
|
||||
[{
|
||||
"name": "Calibrate",
|
||||
"description": "Make sure you gyro sensor is ready to use",
|
||||
"cardType": "tutorial",
|
||||
"url":"/tutorials/calibrate-gyro",
|
||||
"imageUrl":"/static/tutorials/calibrate-gyro.png"
|
||||
}, {
|
||||
"name": "Turn",
|
||||
"description": "Use the gyro to turn precisely",
|
||||
"cardType": "tutorial",
|
||||
"url":"/tutorials/turn-with-gyro",
|
||||
"imageUrl":"/static/tutorials/turn-with-gyro.png"
|
||||
}, {
|
||||
"name": "Move Straight",
|
||||
"description": "Use the gyro to correct the trajectory of the robot",
|
||||
"cardType": "tutorial",
|
||||
"url":"/tutorials/move-straight-with-gyro",
|
||||
"imageUrl":"/static/tutorials/move-straight-with-gyro.png"
|
||||
}, {
|
||||
"name": "Drifter",
|
||||
"description": "Explore how the gyro is drifting",
|
||||
"cardType": "example",
|
||||
"url":"/tutorials/drifter",
|
||||
"imageUrl":"/static/tutorials/drifter.png"
|
||||
}]
|
||||
```
|
61
docs/tutorials/move-straight-with-gyro.md
Normal file
61
docs/tutorials/move-straight-with-gyro.md
Normal file
@@ -0,0 +1,61 @@
|
||||
# Move Straight With Gyro
|
||||
|
||||
## Introduction @fullscreen
|
||||
|
||||
Rotating using a wheel is not precise. The wheel can slip or the motors
|
||||
can be slightly different.
|
||||
With the help of the gyro you can detect and correct deviations in your trajectory.
|
||||
|
||||
* [EV3 Driving Base](https://le-www-live-s.legocdn.com/sc/media/lessons/mindstorms-ev3/building-instructions/ev3-rem-driving-base-79bebfc16bd491186ea9c9069842155e.pdf)
|
||||
* [EV3 Driving Base with Gyro](https://le-www-live-s.legocdn.com/sc/media/lessons/mindstorms-ev3/building-instructions/ev3-gyro-sensor-driving-base-a521f8ebe355c281c006418395309e15.pdf)
|
||||
|
||||
|
||||
## Step 1 Calibration
|
||||
|
||||
Add a ``||sensors:calibrate gyro||`` block in a ``||brick:on button enter pressed||`` block so that you can manually start a calibration process. Run the calibration
|
||||
at least once after connecting the gyro.
|
||||
|
||||
```blocks
|
||||
brick.showPorts()
|
||||
sensors.gyro2.calibrate()
|
||||
```
|
||||
|
||||
## Step 2 Compute the error
|
||||
|
||||
Make a new **error** variable and drag the ``||sensors:gyro rate||``
|
||||
and multiply it by -1. Since the rate shows the rotation rate, we will
|
||||
counter it by negating it.
|
||||
|
||||
```blocks
|
||||
let error = 0
|
||||
brick.showPorts()
|
||||
sensors.gyro2.calibrate()
|
||||
while (true) {
|
||||
error = sensors.gyro2.rate() * -1
|
||||
}
|
||||
```
|
||||
|
||||
## Step 3 Steer with feedback
|
||||
|
||||
Drag a ``||motors:steer motors||`` block under the variable and pass
|
||||
the **error** variable into the turn ratio section.
|
||||
|
||||
If the robot is turning right, the gyro will report a positive rotation rate
|
||||
and the turn ratio will be negative which will the turn the robot left!
|
||||
|
||||
```blocks
|
||||
let error = 0
|
||||
brick.showPorts()
|
||||
sensors.gyro2.calibrate()
|
||||
while (true) {
|
||||
error = sensors.gyro2.rate() * -1
|
||||
motors.largeBC.steer(error, 50)
|
||||
}
|
||||
```
|
||||
|
||||
## Step 4 Run it!
|
||||
|
||||
Download to your brick and test out if the robot is going straight.
|
||||
|
||||
This kind of technique is called a proportional controller;
|
||||
it corrects the inputs (motor speed) with a feedback proportional to the output (rotation rate).
|
43
docs/tutorials/turn-with-gyro.md
Normal file
43
docs/tutorials/turn-with-gyro.md
Normal file
@@ -0,0 +1,43 @@
|
||||
# Turn With Gyro
|
||||
|
||||
## Introduction @fullscreen
|
||||
|
||||
Use the gyro to measure how much the robot is turning, regardless if your wheels are slipping.
|
||||
|
||||
## Step 1 Calibrate
|
||||
|
||||
Add the ``||sensors:calibrate gyro||`` block to make sure your gyro is ready to use.
|
||||
|
||||
```blocks
|
||||
sensors.gyro2.calibrate()
|
||||
```
|
||||
|
||||
## Step 2 Turn
|
||||
|
||||
Use motor blocks to make the robot turn. Don't go too fast!
|
||||
|
||||
```blocks
|
||||
sensors.gyro2.calibrate()
|
||||
motors.largeBC.steer(200, 20)
|
||||
```
|
||||
|
||||
## Step 3 Pause for turn
|
||||
|
||||
Use the ``||sensors:pause until rotated||`` block to wait until the desired amount of rotation has occured.
|
||||
|
||||
```blocks
|
||||
sensors.gyro2.calibrate()
|
||||
motors.largeBC.steer(200, 20)
|
||||
sensors.gyro2.pauseUntilRotated(90)
|
||||
```
|
||||
|
||||
## Step 4 Stop
|
||||
|
||||
Stop the motors!
|
||||
|
||||
```blocks
|
||||
sensors.gyro2.calibrate()
|
||||
motors.largeBC.steer(200, 20)
|
||||
sensors.gyro2.pauseUntilRotated(90)
|
||||
motors.stopAll()
|
||||
```
|
@@ -73,13 +73,7 @@ namespace sensors {
|
||||
}
|
||||
|
||||
setMode(m: ColorSensorMode) {
|
||||
if (m == ColorSensorMode.AmbientLightIntensity) {
|
||||
this.thresholdDetector.setLowThreshold(5);
|
||||
this.thresholdDetector.setHighThreshold(20);
|
||||
} else {
|
||||
this.thresholdDetector.setLowThreshold(20);
|
||||
this.thresholdDetector.setHighThreshold(80);
|
||||
}
|
||||
// don't change threshold after initialization
|
||||
this._setMode(m)
|
||||
}
|
||||
|
||||
|
@@ -87,7 +87,7 @@ namespace sensors.internal {
|
||||
this.devType = DAL.DEVICE_TYPE_NONE
|
||||
this.iicid = ''
|
||||
this.sensors = []
|
||||
this.poller = new Poller(50, () => this.query(), (prev, curr) => this.update(prev, curr));
|
||||
this.poller = new Poller(25, () => this.query(), (prev, curr) => this.update(prev, curr));
|
||||
}
|
||||
|
||||
poke() {
|
||||
@@ -121,7 +121,7 @@ namespace sensors.internal {
|
||||
|
||||
powerMM = control.mmap("/dev/lms_power", 2, 0)
|
||||
|
||||
devPoller = new Poller(500, () => { return hashDevices(); },
|
||||
devPoller = new Poller(250, () => { return hashDevices(); },
|
||||
(prev, curr) => {
|
||||
detectDevices();
|
||||
});
|
||||
@@ -814,10 +814,10 @@ namespace sensors {
|
||||
|
||||
export class ThresholdDetector {
|
||||
public id: number;
|
||||
public min: number;
|
||||
public max: number;
|
||||
public lowThreshold: number;
|
||||
public highThreshold: number;
|
||||
private min: number;
|
||||
private max: number;
|
||||
private lowThreshold: number;
|
||||
private highThreshold: number;
|
||||
public level: number;
|
||||
public state: ThresholdState;
|
||||
|
||||
|
26
libs/core/integrator.ts
Normal file
26
libs/core/integrator.ts
Normal file
@@ -0,0 +1,26 @@
|
||||
namespace control {
|
||||
export class EulerIntegrator {
|
||||
public value: number;
|
||||
private t: number;
|
||||
private v: number;
|
||||
|
||||
constructor() {
|
||||
this.reset();
|
||||
}
|
||||
|
||||
public integrate(derivative: number): void {
|
||||
let now = control.millis();
|
||||
let dt = (now -this.t) / 1000.0;
|
||||
this.value += dt * (this.v + derivative) / 2;
|
||||
|
||||
this.t = now;
|
||||
this.v = derivative;
|
||||
}
|
||||
|
||||
public reset() {
|
||||
this.value = 0;
|
||||
this.v = 0;
|
||||
this.t = control.millis();
|
||||
}
|
||||
}
|
||||
}
|
@@ -264,8 +264,9 @@ namespace motors {
|
||||
// allow 500ms for robot to settle
|
||||
if (this._brake && this._brakeSettleTime > 0)
|
||||
pause(this._brakeSettleTime);
|
||||
else
|
||||
pause(1); // give a tiny breather
|
||||
else {
|
||||
pause(1);
|
||||
}
|
||||
}
|
||||
|
||||
protected pauseOnRun(stepsOrTime: number) {
|
||||
@@ -275,7 +276,6 @@ namespace motors {
|
||||
// allow robot to settle
|
||||
this.settle();
|
||||
} else {
|
||||
// give a breather to the event system in tight loops
|
||||
pause(1);
|
||||
}
|
||||
}
|
||||
|
@@ -25,7 +25,8 @@
|
||||
"dal.d.ts",
|
||||
"icons.jres",
|
||||
"ns.ts",
|
||||
"platform.h"
|
||||
"platform.h",
|
||||
"integrator.ts"
|
||||
],
|
||||
"testFiles": [
|
||||
"test.ts"
|
||||
|
@@ -1,6 +1,6 @@
|
||||
# calibrate
|
||||
|
||||
Reset the zero reference for the gyro to current position of the brick.
|
||||
Detects if the gyro is drifting and performs a full reset if needed.
|
||||
|
||||
```sig
|
||||
sensors.gyro2.calibrate()
|
||||
|
@@ -0,0 +1,21 @@
|
||||
# Pause Until Rotated
|
||||
|
||||
Pauses the program until the gyro sensors detect that the desired amount of rotation
|
||||
has been acheived.
|
||||
|
||||
```
|
||||
sensors.gyro2.pauseUntilRotated(90)
|
||||
```
|
||||
|
||||
## Example
|
||||
|
||||
This program performs a square turn left, then right.
|
||||
|
||||
```blocks
|
||||
sensors.gyro2.calibrate()
|
||||
motors.largeBC.steer(200, 10)
|
||||
sensors.gyro2.pauseUntilRotated(90)
|
||||
motors.largeBC.steer(-200, 10)
|
||||
sensors.gyro2.pauseUntilRotated(-90)
|
||||
motors.largeBC.stop()
|
||||
```
|
@@ -7,12 +7,15 @@ const enum GyroSensorMode {
|
||||
namespace sensors {
|
||||
//% fixedInstances
|
||||
export class GyroSensor extends internal.UartSensor {
|
||||
private calibrating: boolean;
|
||||
private _calibrating: boolean;
|
||||
private _drift: number;
|
||||
private _angle: control.EulerIntegrator;
|
||||
constructor(port: number) {
|
||||
super(port)
|
||||
this.calibrating = false;
|
||||
this._calibrating = false;
|
||||
this._drift = 0;
|
||||
this._angle = new control.EulerIntegrator();
|
||||
this._setMode(GyroSensorMode.Rate);
|
||||
this.setMode(GyroSensorMode.Rate);
|
||||
}
|
||||
|
||||
@@ -21,13 +24,17 @@ namespace sensors {
|
||||
}
|
||||
|
||||
_query(): number {
|
||||
return this.getNumber(NumberFormat.Int16LE, 0);
|
||||
const v = this.getNumber(NumberFormat.Int16LE, 0);
|
||||
this._angle.integrate(v - this._drift);
|
||||
return v;
|
||||
}
|
||||
|
||||
setMode(m: GyroSensorMode) {
|
||||
if (m == GyroSensorMode.Rate && this.mode != m)
|
||||
this._drift = 0;
|
||||
this._setMode(m)
|
||||
// decrecated
|
||||
}
|
||||
|
||||
isCalibrating(): boolean {
|
||||
return this._calibrating;
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -40,15 +47,14 @@ namespace sensors {
|
||||
//% parts="gyroscope"
|
||||
//% blockNamespace=sensors
|
||||
//% this.fieldEditor="ports"
|
||||
//% weight=64
|
||||
//% weight=64 blockGap=8
|
||||
//% group="Gyro Sensor"
|
||||
angle(): number {
|
||||
this.poke();
|
||||
if (this.calibrating)
|
||||
pauseUntil(() => !this.calibrating, 2000);
|
||||
if (this._calibrating)
|
||||
pauseUntil(() => !this._calibrating, 2000);
|
||||
|
||||
this.setMode(GyroSensorMode.Angle);
|
||||
return this._query();
|
||||
return Math.round(this._angle.value);
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -65,15 +71,13 @@ namespace sensors {
|
||||
//% group="Gyro Sensor"
|
||||
rate(): number {
|
||||
this.poke();
|
||||
if (this.calibrating)
|
||||
pauseUntil(() => !this.calibrating, 2000);
|
||||
|
||||
this.setMode(GyroSensorMode.Rate);
|
||||
if (this._calibrating)
|
||||
pauseUntil(() => !this._calibrating, 2000);
|
||||
return this._query() - this._drift;
|
||||
}
|
||||
|
||||
/**
|
||||
* Forces a calibration of the with light progress indicators.
|
||||
* Detects if calibration is necessary and performs a full reset, drift computation.
|
||||
* Must be called when the sensor is completely still.
|
||||
*/
|
||||
//% help=sensors/gyro/calibrate
|
||||
@@ -85,16 +89,30 @@ namespace sensors {
|
||||
//% weight=51 blockGap=8
|
||||
//% group="Gyro Sensor"
|
||||
calibrate(): void {
|
||||
if (this.calibrating) return; // already in calibration mode
|
||||
if (this._calibrating) return; // already in calibration mode
|
||||
|
||||
const statusLight = brick.statusLight(); // save current status light
|
||||
brick.setStatusLight(StatusLight.Orange);
|
||||
|
||||
this.calibrating = true;
|
||||
this._calibrating = true;
|
||||
// may be triggered by a button click,
|
||||
// give time for robot to settle
|
||||
pause(700);
|
||||
|
||||
// compute drift
|
||||
this.computeDriftNoCalibration();
|
||||
if (Math.abs(this.drift()) < 0.1) {
|
||||
// no drift, skipping calibration
|
||||
brick.setStatusLight(StatusLight.Green); // success
|
||||
pause(1000);
|
||||
brick.setStatusLight(statusLight); // resture previous light
|
||||
|
||||
// and we're done
|
||||
this._angle.reset();
|
||||
this._calibrating = false;
|
||||
return;
|
||||
}
|
||||
|
||||
// calibrating
|
||||
brick.setStatusLight(StatusLight.OrangePulse);
|
||||
|
||||
@@ -103,22 +121,22 @@ namespace sensors {
|
||||
// wait till sensor is live
|
||||
pauseUntil(() => this.isActive(), 7000);
|
||||
// mode toggling
|
||||
this.setMode(GyroSensorMode.Rate);
|
||||
this.setMode(GyroSensorMode.Angle);
|
||||
this._setMode(GyroSensorMode.Rate);
|
||||
this._setMode(GyroSensorMode.Angle);
|
||||
this._setMode(GyroSensorMode.Rate);
|
||||
|
||||
// check sensor is ready
|
||||
if (!this.isActive()) {
|
||||
brick.setStatusLight(StatusLight.RedFlash); // didn't work
|
||||
pause(2000);
|
||||
brick.setStatusLight(statusLight); // restore previous light
|
||||
this.calibrating = false;
|
||||
this._angle.reset();
|
||||
this._calibrating = false;
|
||||
return;
|
||||
}
|
||||
|
||||
// switch to rate mode
|
||||
this.computeDriftNoCalibration();
|
||||
// switch back to the desired mode
|
||||
this.setMode(this.mode);
|
||||
|
||||
// and done
|
||||
brick.setStatusLight(StatusLight.Green); // success
|
||||
@@ -126,7 +144,8 @@ namespace sensors {
|
||||
brick.setStatusLight(statusLight); // resture previous light
|
||||
|
||||
// and we're done
|
||||
this.calibrating = false;
|
||||
this._angle.reset();
|
||||
this._calibrating = false;
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -141,13 +160,37 @@ namespace sensors {
|
||||
//% weight=50 blockGap=8
|
||||
//% group="Gyro Sensor"
|
||||
reset(): void {
|
||||
if (this.calibrating) return; // already in calibration mode
|
||||
if (this._calibrating) return; // already in calibration mode
|
||||
|
||||
this._calibrating = true;
|
||||
const statusLight = brick.statusLight(); // save current status light
|
||||
brick.setStatusLight(StatusLight.Orange);
|
||||
|
||||
this.calibrating = true;
|
||||
// send a reset command
|
||||
super.reset();
|
||||
this._drift = 0;
|
||||
this._angle.reset();
|
||||
pauseUntil(() => this.isActive(), 7000);
|
||||
|
||||
// check sensor is ready
|
||||
if (!this.isActive()) {
|
||||
brick.setStatusLight(StatusLight.RedFlash); // didn't work
|
||||
pause(2000);
|
||||
brick.setStatusLight(statusLight); // restore previous light
|
||||
this._angle.reset();
|
||||
this._calibrating = false;
|
||||
return;
|
||||
}
|
||||
|
||||
this._setMode(GyroSensorMode.Rate);
|
||||
|
||||
// and done
|
||||
this.calibrating = false;
|
||||
brick.setStatusLight(StatusLight.Green); // success
|
||||
pause(1000);
|
||||
brick.setStatusLight(statusLight); // resture previous light
|
||||
// and done
|
||||
this._angle.reset();
|
||||
this._calibrating = false;
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -177,39 +220,54 @@ namespace sensors {
|
||||
//% weight=10 blockGap=8
|
||||
//% group="Gyro Sensor"
|
||||
computeDrift() {
|
||||
if (this.calibrating)
|
||||
pauseUntil(() => !this.calibrating, 2000);
|
||||
if (this._calibrating)
|
||||
pauseUntil(() => !this._calibrating, 2000);
|
||||
pause(1000); // let the robot settle
|
||||
this.computeDriftNoCalibration();
|
||||
}
|
||||
|
||||
/**
|
||||
* Pauses the program until the gyro detected
|
||||
* that the angle changed by the desired amount of degrees.
|
||||
* @param degrees the degrees to turn
|
||||
*/
|
||||
//% help=sensors/gyro/pause-until-rotated
|
||||
//% block="pause until **gyro** %this|rotated %degrees=rotationPicker|degrees"
|
||||
//% blockId=gyroPauseUntilRotated
|
||||
//% parts="gyroscope"
|
||||
//% blockNamespace=sensors
|
||||
//% this.fieldEditor="ports"
|
||||
//% degrees.defl=90
|
||||
//% weight=63
|
||||
//% group="Gyro Sensor"
|
||||
pauseUntilRotated(degrees: number, timeOut?: number): void {
|
||||
let a = this.angle();
|
||||
const end = a + degrees;
|
||||
const direction = (end - a) > 0 ? 1 : -1;
|
||||
pauseUntil(() => (end - this.angle()) * direction <= 0, timeOut);
|
||||
}
|
||||
|
||||
private computeDriftNoCalibration() {
|
||||
// clear drift
|
||||
this.setMode(GyroSensorMode.Rate);
|
||||
this._drift = 0;
|
||||
const n = 100;
|
||||
const n = 10;
|
||||
let d = 0;
|
||||
for (let i = 0; i < n; ++i) {
|
||||
d += this._query();
|
||||
pause(4);
|
||||
pause(20);
|
||||
}
|
||||
this._drift = Math.round(d / n);
|
||||
this._drift = d / n;
|
||||
this._angle.reset();
|
||||
}
|
||||
|
||||
_info(): string {
|
||||
if (this.calibrating)
|
||||
if (this._calibrating)
|
||||
return "cal...";
|
||||
|
||||
switch (this.mode) {
|
||||
case GyroSensorMode.Angle:
|
||||
return `${this._query()}>`;
|
||||
case GyroSensorMode.Rate:
|
||||
let r = `${this._query()}r`;
|
||||
if (this._drift != 0)
|
||||
r += `-${this._drift | 0}`;
|
||||
return r;
|
||||
}
|
||||
return "";
|
||||
let r = `${this._query()}r`;
|
||||
if (this._drift != 0)
|
||||
r += `-${this._drift | 0}`;
|
||||
return r;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -224,4 +282,17 @@ namespace sensors {
|
||||
|
||||
//% fixedInstance whenUsed block="4" jres=icons.port4
|
||||
export const gyro4: GyroSensor = new GyroSensor(4)
|
||||
|
||||
/**
|
||||
* Get the rotation angle field editor
|
||||
* @param degrees angle in degrees, eg: 90
|
||||
*/
|
||||
//% blockId=rotationPicker block="%degrees"
|
||||
//% blockHidden=true shim=TD_ID
|
||||
//% colorSecondary="#FFFFFF"
|
||||
//% degrees.fieldEditor="numberdropdown" degrees.fieldOptions.decompileLiterals=true
|
||||
//% degrees.fieldOptions.data='[["30", 30], ["45", 45], ["60", 60], ["90", 90], ["180", 180], ["-30", -30], ["-45", -45], ["-60", -60], ["-90", -90], ["-180", -180]]'
|
||||
export function __rotationPicker(degrees: number): number {
|
||||
return degrees;
|
||||
}
|
||||
}
|
||||
|
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "pxt-ev3",
|
||||
"version": "1.2.16",
|
||||
"version": "1.2.21",
|
||||
"description": "LEGO MINDSTORMS EV3 for Microsoft MakeCode",
|
||||
"private": false,
|
||||
"keywords": [
|
||||
|
BIN
sim/public/cityshapermap.jpg
Normal file
BIN
sim/public/cityshapermap.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 115 KiB |
@@ -1,5 +1,5 @@
|
||||
namespace pxsim {
|
||||
const enum GyroSensorMode {
|
||||
export const enum GyroSensorMode {
|
||||
None = -1,
|
||||
Angle = 0,
|
||||
Rate = 1,
|
||||
@@ -8,7 +8,6 @@ namespace pxsim {
|
||||
export class GyroSensorNode extends UartSensorNode {
|
||||
id = NodeType.GyroSensor;
|
||||
|
||||
private angle: number = 0;
|
||||
private rate: number = 0;
|
||||
|
||||
constructor(port: number) {
|
||||
@@ -19,23 +18,20 @@ namespace pxsim {
|
||||
return DAL.DEVICE_TYPE_GYRO;
|
||||
}
|
||||
|
||||
setAngle(angle: number) {
|
||||
if (this.angle != angle) {
|
||||
this.angle = angle;
|
||||
this.setChangedState();
|
||||
}
|
||||
}
|
||||
|
||||
setRate(rate: number) {
|
||||
rate = rate | 0;
|
||||
if (this.rate != rate) {
|
||||
this.rate = rate;
|
||||
this.setChangedState();
|
||||
}
|
||||
}
|
||||
|
||||
getRate() {
|
||||
return this.rate;
|
||||
}
|
||||
|
||||
getValue() {
|
||||
return this.mode == GyroSensorMode.Angle ? this.angle :
|
||||
this.mode == GyroSensorMode.Rate ? this.rate : 0;
|
||||
return this.getRate();
|
||||
}
|
||||
}
|
||||
}
|
@@ -49,11 +49,13 @@ namespace pxsim.visuals {
|
||||
}
|
||||
|
||||
private updateDimensions(width: number, height: number, strict?: boolean) {
|
||||
width = Math.max(0, width);
|
||||
height = Math.max(0, height);
|
||||
if (this.content) {
|
||||
const currentWidth = this.getInnerWidth();
|
||||
const currentHeight = this.getInnerHeight();
|
||||
const newHeight = currentHeight / currentWidth * width;
|
||||
const newWidth = currentWidth / currentHeight * height;
|
||||
const newHeight = Math.max(0, currentHeight / currentWidth * width);
|
||||
const newWidth = Math.max(0, currentWidth / currentHeight * height);
|
||||
if (strict) {
|
||||
this.content.setAttribute('width', `${width}`);
|
||||
this.content.setAttribute('height', `${height}`);
|
||||
|
@@ -1,13 +1,15 @@
|
||||
|
||||
|
||||
namespace pxsim.visuals {
|
||||
const MAX_RATE = 40;
|
||||
|
||||
export class RotationSliderControl extends ControlView<GyroSensorNode> {
|
||||
private group: SVGGElement;
|
||||
private slider: SVGGElement;
|
||||
private rateText: SVGTextElement;
|
||||
|
||||
private static SLIDER_WIDTH = 70;
|
||||
private static SLIDER_HEIGHT = 78;
|
||||
//private static SLIDER_HEIGHT = 78;
|
||||
|
||||
getInnerView(parent: SVGSVGElement, globalDefs: SVGDefsElement) {
|
||||
this.group = svg.elt("g") as SVGGElement;
|
||||
@@ -23,6 +25,14 @@ namespace pxsim.visuals {
|
||||
pxsim.svg.child(this.slider, "circle", { 'cx': 9, 'cy': 50, 'r': 13, 'style': 'fill: #f12a21' });
|
||||
pxsim.svg.child(this.slider, "circle", { 'cx': 9, 'cy': 50, 'r': 12.5, 'style': 'fill: none;stroke: #b32e29' });
|
||||
|
||||
this.rateText = pxsim.svg.child(this.group, "text", {
|
||||
'x': this.getInnerWidth() / 2,
|
||||
'y': RotationSliderControl.SLIDER_WIDTH * 1.2,
|
||||
'text-anchor': 'middle', 'dominant-baseline': 'middle',
|
||||
'style': 'font-size: 16px',
|
||||
'class': 'sim-text inverted number'
|
||||
}) as SVGTextElement;
|
||||
|
||||
const dragSurface = svg.child(this.group, "rect", {
|
||||
x: 0,
|
||||
y: 0,
|
||||
@@ -61,7 +71,10 @@ namespace pxsim.visuals {
|
||||
return;
|
||||
}
|
||||
const node = this.state;
|
||||
const percentage = node.getValue();
|
||||
const rate = node.getRate();
|
||||
this.rateText.textContent = `${rate}°/s`
|
||||
// cap rate at 40deg/s
|
||||
const percentage = 50 + Math.sign(rate) * Math.min(MAX_RATE, Math.abs(rate)) / MAX_RATE * 50;
|
||||
const x = RotationSliderControl.SLIDER_WIDTH * percentage / 100;
|
||||
const y = Math.abs((percentage - 50) / 50) * 10;
|
||||
this.slider.setAttribute("transform", `translate(${x}, ${y})`);
|
||||
@@ -73,8 +86,10 @@ namespace pxsim.visuals {
|
||||
const bBox = this.content.getBoundingClientRect();
|
||||
let t = Math.max(0, Math.min(1, (width + bBox.left / this.scaleFactor - cur.x / this.scaleFactor) / width))
|
||||
|
||||
t = -(t - 0.5) * 2; // [-1,1]
|
||||
|
||||
const state = this.state;
|
||||
state.setRate((1 - t) * (100));
|
||||
state.setRate(MAX_RATE * t);
|
||||
}
|
||||
}
|
||||
|
||||
|
55
sim/visuals/robotgametable.ts
Normal file
55
sim/visuals/robotgametable.ts
Normal file
@@ -0,0 +1,55 @@
|
||||
namespace pxsim {
|
||||
export class RobotGameTable {
|
||||
readonly ctx: CanvasRenderingContext2D;
|
||||
readonly data: ImageData;
|
||||
|
||||
cx: number; // cm
|
||||
cy: number; // cm
|
||||
angle: number; // radians
|
||||
cwidth: number; // cm
|
||||
|
||||
constructor(public canvas: HTMLCanvasElement, public scale: number) {
|
||||
this.ctx = this.canvas.getContext("2d");
|
||||
this.data = this.ctx.getImageData(0, 0, this.canvas.width, this.canvas.height);
|
||||
this.cx = this.width / 2;
|
||||
this.cy = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the width in cm
|
||||
*/
|
||||
get width() {
|
||||
return this.canvas.width * this.scale;
|
||||
}
|
||||
|
||||
/**
|
||||
* gets the height in cm
|
||||
*/
|
||||
get height() {
|
||||
return this.canvas.height * this.scale;
|
||||
}
|
||||
|
||||
color(): number {
|
||||
// compute color sensor position from center;
|
||||
// todo
|
||||
const px = Math.max(0, Math.min(this.data.width, (this.cx ) / this.scale));
|
||||
const py = Math.max(0, Math.min(this.data.height, (this.cy ) / this.scale));
|
||||
// get color
|
||||
const i = px * this.data.width + py;
|
||||
let c =
|
||||
(this.data.data[i] << 16) | (this.data.data[i + 1] << 8) | (this.data.data[i + 2]);
|
||||
// map color to known color
|
||||
return c;
|
||||
}
|
||||
|
||||
intensity(): number {
|
||||
const c = this.color();
|
||||
return ((c >> 16 & 0xff) + (c >> 8 & 0xff) + (c & 0xff)) / 3;
|
||||
}
|
||||
|
||||
ultrasonicDistance() {
|
||||
// obstacles?
|
||||
|
||||
}
|
||||
}
|
||||
}
|
@@ -18,6 +18,7 @@
|
||||
"Touch Sensor Tutorials": "tutorials/touch-sensor",
|
||||
"Color Sensor Tutorials": "tutorials/color-sensor",
|
||||
"Ultrasonic Sensor Tutorials": "tutorials/ultrasonic-sensor",
|
||||
"Gyro Tutorials": "tutorials/gyro",
|
||||
"Infrared Sensor Tutorials": "tutorials/infrared-sensor",
|
||||
"FLL / City Shaper": "tutorials/city-shaper",
|
||||
"Design Engineering": "design-engineering",
|
||||
|
Reference in New Issue
Block a user